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ADNOTARE 

Isacova Calina,  

teza „Proprietățile electronice și fononice ale nanostructurilor formate din puncte 

cuantice” / pentru conferirea titlului de doctor în științe fizice, specialitatea 131.04 Fizica 

computațională și modelarea proceselor, elaborată în laboratorul de cercetări științifice 

„Fizica și ingineria nanomaterialelor „E. Pokatilov” al Universității de Stat din Moldova, 

or. Chișinău, R. Moldova, în anul 2023. 

Structura lucrării: Lucrarea este formată din Introducere, trei capitole, Concluzii generale și 

Recomandări, Bibliografie din 157 titluri, 145 pagini, 79 figuri, 53 formule și 1 tabel. Rezultatele 

obținute în teză au fost publicate în 8 articole științifice și au fost prezentate 32 rapoarte la 

conferințe științifice internaționale și naționale.  

Cuvinte-cheie: suprarețea unidimensională, Hamiltonian multizonal, exciton, fonon, 

conductibilitate termică.  

Scopul și obiectivele: cercetarea influenței parametrilor materiali și geometrici ai suprarețelelor 

unidimensionale din puncte cuantice (1D-SRPC) Si/SiO2 și Si/SiC asupra proprietăților 

electronice, de gol și excitonice; dezvoltarea modelului „face-centred cubic cell” al oscilațiilor 

rețelei cristaline pentru studierea proprietăților fononice și termoconductibile ale 1D-SRPC Si/Ge 

și Si/SiO2, cât și a nanotuburilor multistrat (NTM) Si/SiO2. 

Noutatea științifică și originalitatea: Se arată, că descrierea cantitativă a stărilor excitonice în 

SRPC cercetate necesită utilizarea Hamiltonianului multizonal al golurilor, care permite de a ține 

cont de amestecarea golurilor grele, ușoare și de tip „split-off”; s-a stabilit faptul, că 

conductibilitatea termică a 1D-SRPC și NTM cercetate este semnificativ mai joasă decât a 

nanofirelor corespunzătoare datorită efectului de captare a modelor fononice și împrăștierea 

fononilor pe suprafețele interioare ale structurilor. 

Problema științifică soluționată: au fost teoretic studiate detaliat proprietățile excitonice, 

fononice și termoconductibile ale 1D-SRPC Si/SiO2 și Si/SiC, cât și transportul de căldură în NTM 

Si/SiO2. 

Valoarea teoretică: au fost dezvoltate modelele teoretice ale stărilor excitonice și fononice în 1D-

SRPC și NTM. 

Valoarea aplicativă a lucrării: implementarea practică a rezultatelor obținute va contribui la 

apariția unei clase noi de nanomateriale, având perspective promițătoare în aplicațiile 

optoelectronice, termoelectrice și de izolare termică.  
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SUMMARY 

Isacova Calina, “Exciton and phonon properties in quantum dot nanostructures”,  

Ph. D. thesis in physics,  

speciality 131.04 Computational physics and modelling of processes, was elaborated  

in “E. Pokatilov laboratory of Physics and Engineering of Nanomaterials”,  

Moldova State University, Chișinău, R. Moldova, 2023.  

Work structure: The Thesis consists of an Introduction, 3 Chapters, General conclusions and 

recommendations, 157 references, 145 pages, 79 figures, 53 equations, and 1 table. The results 

presented in the work are published in 8 scientific articles and presented at 32 international and 

national conferences. 

Keywords: one-dimensional quantum dot superlattice, multi-band Hamiltonian, exciton, phonon, 

thermal conductivity 

Goals and objectives: the study of material and geometrical parameters’ influence on electronic, 

holes’, and excitonic properties in one-dimensional quantum dot superlattice (1D-QDSL) Si/SiO2 

and Si/SiC; development of face-centred cubic cell (FCC) lattice dynamic model for studying 

phonon and thermal properties in Si/Ge and Si/SiO2 1D-QDSL, as well as in Si/SiO2 multishell 

nanotube (MNT) 

Scientific novelty and originality: it was demonstrated, that three-band Hamiltonian for holes, 

which takes into account the mixing of the heavy, light, and split-off holes’ states, is required for 

more accurate quantitative description of exciton states in 1D-QDSL; it was theoretically shown 

that thermal conductivity of the Si-based 1D-QDSL and Si/SiO2 MNT is significantly lower than 

that in corresponding silicon nanowires due to the trapping of phonon modes in nanostructure’s 

segments and phonon scattering at interfaces of the QDSL. 

Solved scientific problem: it has been carried out a detailed theoretical study of the exciton, 

phonon and thermal properties in the Si/Ge, Si/SiC and Si/SiO2 QDSLs as well as of phonon and 

thermal properties in the Si/SiO2 MNTs 

Theoretical importance is related to development of the theoretical model of the exciton and 

phonon states in 1D-QDSLs 

Practical significance: practical implementation of the obtained results may lead to the 

appearance of new nanomaterials promising for optoelectronic, thermoelectric and thermal 

insulating applications 
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АННОТАЦИЯ 

Исакова Калина,  

диссертация «Экситонные и фононные свойства квантовоточечных наноструктур» 

на соискание ученой степени доктора физических наук по специальности  

131.04 Вычислительная физика и моделирование процессов, выполненная в 

лаборатории «Физика и инженерия наноматериалов имени Е. Покатилова» 

Государственного университета Молдовы, г. Кишинев, Р. Молдова, в 2023 году. 

Структура работы: Работа состоит из Введения, трех глав, Общих выводов и 

рекомендаций, Библиографии из 157 названий, 145 страниц, 79 рисунков, 53 формул и 1 

таблицы. Полученные результаты опубликованы в 8 научных работах и представлены на 32 

международных и национальных конференциях. 

Ключевые слова: одномерная сверхрешетка, многозонный гамильтониан, экситон, 

фононы, теплопроводность  

Цели и задачи: исследование влияния материальных и геометрических параметров 

одномерных квантовоточечных сверхрешеток (1D-КТСР) Si/SiO2 и Si/SiC на электронные, 

дырочные и экситонные свойства; развитие “face-centred cubic cell” модели колебаний 

кристаллической решетки для изучения фононных и теплопроводящих свойств 

одномерных квантовоточечных сверхрешеток Si/Ge и Si/SiO2, а также многослойных 

нанотрубок (МНТ) Si/SiO2. 

Научная новизна и оригинальность: показано, что для количественного описания 

экситонных состояний в рассматриваемых 1D-КТСР необходимо использовать 

многозонный дырочный гамильтониан, который позволяет учесть перемешивание 

тяжелых, легких и “split-off” дырок; установлено, что теплопроводность 1D-КТСР и МНТ 

значительно ниже теплопроводности соответствующих нанонитей благодаря эффекту 

захвата фононных мод в сегментах этих наноструктур и рассеянию фононов на внутренних 

интерфейсах 

Решенная научная задача: проведено подробное теоретическое изучение экситонных, 

фононных и теплопроводящих свойств 1D-КТСР Si/Ge и Si/SiO2, а также теплового 

транспорта в МНТ Si/SiO2. 

Теоретическая значимость: развиты модели экситонных и фононных состояний в 1D-

КТСР и МНТ. 

Практическая ценность работы: практическое внедрение полученных результатов будет 

способствовать появлению нового класса наноматериалов перспективных для 

оптоэлектронных, термоэлектрических и теплоизоляционных применений. 
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ABBREVIATIONS  

APGV – average phonon group velocity 

CA – continuum approach 

DFT – density functional theory 

DOS – density of states 

DTPQD – double truncated pyramidal quantum dot 

FCC – face-centred cubic cell 

HRTEM – high-resolution transmission electron microscopy 

LA – longitudinal acoustic 

MNT – multi-shell nanotubes 

MP–  mean path 

nc – nanocrystals 

NT – nanotubes 

NW – nanowire 

TA – transversal acoustic 

TBM – tight-binding model 

QD – quantum dot 

QDSL – quantum dot superlattice 

1D-QDSL – one-dimensional quantum dot superlattice 

1D-C-QDSL – one-dimensional quantum dot superlattice with constant cross-section 

1D-M-QDSL – one-dimensional quantum dot superlattice with modulated cross-section 

PL – photoluminescence 

RT – room temperature 

TC – thermal conductivity 

TEM – transmission electron microscopy  
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INTRODUCTION 

For the last decades, semiconductor nanostructures remain the object of close attention of 

researchers. Their characteristic feature is confinement, which causes quantization of the energy 

spectrum of charge carriers and phonons [1–12]. Silicon, being the second most abundant element 

on earth and having excellent mechanical and electronic properties, has become the main material 

in microelectronics with the advent of microelectronics. semiconductor industry and is likely to 

remain so for the foreseeable future. Silicon quantum dots (QDs) (nanocrystals) have demonstrated 

different unique physical properties [2], [3], [13], [14], allowing their applications in 

optoelectronics (light-emitting diodes (LEDs), single electron transistors, or memory devices), in 

photonics (different energy sources) as well as in biomedicine for photosensitization of singlet 

oxygen [15]. Qualitative and quantitative information about the optical, exciton, phonon, and 

thermal properties of silicon-based nanostructures is necessary for the improvement of the 

characteristics of silicon-based devices. 

Optimization of thermal transport in nanoscale structures is one of the priority tasks in 

modern nanoelectronics. Efficient heat management at the nanoscale can prevent overheating of 

electronic chips and may lead to an increase of their operation speed. The low thermal conductivity 

of nanoscale structures makes them potentially promising for thermoelectric applications, since 

the quality factor of thermoelectric conversion ZT contains thermal conductivity in the 

denominator: 
2

( )


 


ph el

S T
ZT , where S is the Seebeck coefficient,   is the electrical 

conductivity, T is the absolute temperature, ph  and el  are the phononic and electronic thermal 

conductivity, respectively. At the same time, efficient heat removal from micro- and nanosized 

electronic chips requires nanomaterials with high thermal conductivity. Thus, the theoretical and 

experimental search for different ways to both reduce and increase thermal conductivity continues 

[16], [17]. Phonon engineering, i.e. improving of electrical, and thermal properties of 

nanostructures by changing their phonon properties was found as a powerful tool for the 

optimization of thermal, electric and thermoelectric properties at the nanoscale [6], [18], [19]. It 

has been shown that phonon engineering is particularly effective in nanostructured materials 

composed of layers or segments of different shapes, sizes, and/or materials. A strong drop of lattice 

thermal conductivity (up to one order of magnitude) has been demonstrated both experimentally 

and theoretically in silicon nanolayers containing germanium quantum dots [20], in silicon 

nanowires with rough surfaces [21], in Si/Ge nanowires of constant and variable cross sections 

[7], [8], [22], [23], as well as in segmented nanowires [23–28]. At the same time, there is some 



10 
 

lack of investigation of the physical properties of quasi-one-dimensional quantum dot 

superlattices, i.e. arrays of quantum dots ordered in one spatial dimension. Such structures 

combine the possibility of free moving of charge carriers or phonons in one direction with strong 

spatial confinement in the other two directions. In this Thesis, we theoretically investigate the 

exciton, phonon, and thermal properties of Si-based one-dimensional quantum dot superlattices 

and Si/SiO2 multi-shell nanotubes and discuss optimization of their parameters for optical, energy 

transfer, and thermal management applications. 

Goal and objectives: 

 Development of theoretical models for electron, hole, and exciton states in Si-based  

1D-QDSLs;  

 Investigation of electron, hole, exciton, and photoluminescence properties of Si-based  

1D-QDSLs and their optimization for optical and energy transfer applications;  

 Development of theoretical models for phonon states and thermal conductivity in Si-based 

QDSLs and Si/SiO2 multi-shell nanotubes; 

 Investigation of phonon and thermal properties of Si-based 1D-QDSLs and Si/SiO2 MNTs 

and their optimization for heat management applications. 

Research hypothesis: 

 Three-band Bart’s Hamiltonian should be used for the quantitate description of exciton states 

in Si quantum dots; 

 The broadening of photoluminescence lines in Si QDs can be theoretically explained by the 

dispersion of QD’s shapes and sizes; 

 Thermal transport in Si/Ge 1D-QDSLs is significantly suppressed due to trapping of many 

phonon modes in nanostructure segments and phonon scattering at Si/Ge interfaces; 

 L-fold drop of the thermal conductivity in a wide temperature range from 50K  to 400K is 

predicted for Si/SiO2 MNTs with L shells in comparison with one-shell Si/SiO2 NT. 

Scientific research methodology 

Exciton properties: 

1. Effective-mass approach with three-band hole Hamiltonian for the theoretical 

investigation of the electron, hole, and exciton states. This approach has also taken into 

account anisotropy of the electron and hole effective masses and self-actions; 

2. Finite differences method for numerical solution of Schrodinger equations 

3. Davidson-Liu method [29] for diagonalization of huge matrix (up to 107 elements). 
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4. An iterative method of Jacobi-Seidel for numerical calculation of Coulomb potentials in 

the considered nanostructures. 

Phonons and thermal conductivity: 

5. Face-centred-cubic cell model of lattice vibrations for theoretical investigation of phonon 

modes in Si-based 1D-QDSLs and Si/SiO2 MNTs. 

6. Boltzmann transport equation approach within relaxation time approximation [30–33] for 

the theoretical study of thermal fluxes in Si-based 1D-QDSLs and Si/SiO2 MNTs. All main 

mechanisms of phonon scattering in QDSLs and MNTs were taken into consideration: 

three-phonon Umklapp scattering, boundary, and impurity scatterings [31–38].  

The scientific novelty of the work is related to the comprehensive theoretical study of exciton, 

phonon, and thermal properties of the recently-discovered class of nanostructures: Si-based one-

dimensional quantum-dot superlattices and Si/SiO2 multi-shell nanotubes. The following new 

theoretical results have been obtained: 

 An increase in the potential barrier height leads to an enhancement of electron and hole spatial 

confinement and the corresponding increase of their energies and distance between energy 

levels; 

 Both binding energy and total exciton energy decrease with the rise of QD’s volume due to the 

weakening of the spatial confinement of electrons and holes; 

 The shape of the Si QDs strongly influences electron, hole, and exciton states. It has been 

shown that conical QDs possess lower values of ground exciton energy in comparison with the 

cuboid and pyramidal QDs for volumes  332 nmV , while for  332 nmV  cuboid QDs 

demonstrate lower values of ground exciton energy; 

 The outer media parameters influence the electron and hole ground energy only for Si QDs 

with narrow SiC shell with thickness 1 nm  because maximal penetration of hole and electron 

wave functions into barrier media in considered Si/SiC/air or Si/SiC/water QDs is about 1 nm  .  

 The large broadening of PL bands in Si QDs as well as the dependence of exciton energy on 

annealing temperature reported recently in experimental works [13], [39], [40] can be 

theoretically explained by the dispersion of QD’s shapes and sizes. 

 Phonon modes in Si/Ge 1D-QDSLs are trapped in their segments due to an acoustical 

mismatch of materials. The slope of the phonon dispersion in 1D-QDSLs is smaller than in Si 

nanowires. Many high energy modes in Si/Ge QDSLs are dispersionless and possess low group 

velocities close to 0 value. 
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 The average phonon group velocities in Si/Ge 1D-QDSLs are significantly lower than those in 

nanowires for all phonon energies in 1D-M-QDSLs and for phonon energies 5meV  in 

1D-C-QDSLs. The effect of APGV drop is stronger in the case of 1D-M-QDSLs due to the 

interplay between segmentation and cross-section modulation. 

 Thermal transport in Si/Ge 1D-QDSLs is significantly suppressed due to phonon deceleration 

and reinforcement of phonon scattering at Si/Ge interfaces. Up to 7-times (13.5-times) drop of 

TC was demonstrated for C-QDSLs (M-QDSLs) as a function of temperature. At room 

temperature, the thermal conductivity in Si/Ge 1D-C-QDSLs is by a factor of 2.6 – 2.9 lower 

than that in silicon nanowires with the same cross-section.  

 Phonon average group velocities in multi-shell Si nanotubes are close to 0 for phonon energies 

10 meV . 

 A large number of phonon modes in Si/SiO2 MNTs are scattered on Si/SiO2 interfaces. As a 

result, an L-fold drop of the thermal conductivity in a wide temperature range from 50K  to 

400K  is predicted for Si/SiO2 MNTs with L shells in comparison with one-shell Si/SiO2 NT. 

Structure of the Thesis  

The Thesis consists of an Introduction, 3 Chapters, and General conclusions and 

Recommendations. The Thesis contains 157 references, 145 pages, 79 figures, 53 equations, and 

1 table. 

The Introduction presents a general analysis of the thesis, argues the relevance of the 

researched topic, and describes the state of research on this topic in the world. The Introduction 

elucidates the scientific novelty of the obtained results, and the theoretical and practical importance 

of the research is highlighted. The main scope and objectives of the work are also defined.  

Chapter 1 contains a review of scientific papers published in the literature on the problem 

under study and methods of solution. We analysed works that study, both theoretically and 

experimentally, excitonic, photoluminescence, and thermal properties of the different 

nanostructures and the comparison of these properties with analogical bulk materials. The 

presented works are dedicated to the Si/SiO2 QDs and their PL properties, and the influence of the 

sample tailoring conditions on PL energy, line form, and its intensity. There are described practical 

applications of the QD of different origins, especially of the non-radiative energy transfer from 

QDs. The methods of the theoretical study of the electron, hole, and exciton properties of the QD 

are described, as well. The second part elucidates research in the field of phonon engineering and 

thermal transport. It provides details about different approaches to the theoretical study of the 
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thermal flux in heterogeneous nanostructures, such as multi-layered planar structures, and 

heterowires.  

Chapter 2 describes the theoretical study of the electron, hole, exciton, and PL properties 

of the Si QD embedded in a dielectric matrix. The electron and hole spectra were calculated in the 

framework of the effective mass approach, taking into account self-action energy, finite potential 

barrier, and anisotropy of the effective mass in Si. Holes energy states were calculated using one-

zone Hamiltonian and non-symmetric three-band Bart’s Hamiltonian. Hole levels calculated via 

Bart’s Hamiltonian have lower energy and less energy distance between levels than the heavy hole 

levels calculated using one-zone Hamiltonian. Exciton energies were calculated taking into 

account the mixing of charge carriers levels with higher energies. Mixing electron and hole levels, 

and using Bart’s Hamiltonian gives lower energy of the exciton levels, which gives us better 

concordance with the experimental results, and makes our model applicable for predicting exciton 

energies even for small QD, with diameters  2 nm . We studied the influence of the QD shape 

and dimensions on electron, hole, and exciton states. It was shown that the energy of states 

decreases with the increase of the QD size, due to weaker spatial confinement of electrons and 

holes. The QDs of the spherical form have lower energies because of the uniform distribution of 

the wave function inside QD and less spatial confinement. The dependence on the potential barrier 

demonstrates the rise of the electron, hole, and exciton energies. The binding energy decreases by 

module while QD dimensions increase because the exciton effective radius is getting larger. Here 

we study the possible reasons for the PL band broadening in Si/SiO2 QDs. We demonstrated that 

the size dispersion of the QDs in the samples and their coupling can be the reason for PL energy 

dependencies to take a Gaussian-like shape. The study of the Si/SiC QDs placed into water or air 

medium demonstrates that varying the QD size and shell thickness can adjust exciton levels energy 

distances to make the transition between them more effective for non-radiative energy transition. 

The topic of Chapter 3 is the thermal properties of the Si-based one-dimensional 

superlattices. We studied the possibility of thermal conductivity reducing in 1D-QDSL with a 

constant and periodically modulated cross-section with and without a shell using principles of 

phonon engineering. Phonon spectra were calculated within the lattice dynamic model Face-

centred cubic cell, which considers replacing the real crystal lattice of the Si or Ge with one face-

centred cubic lattice with double mass in its node. This approach excludes optic oscillations from 

calculations, however, we do not have any fitting parameters and demonstrated a good qualitative 

description of the effects. We derived equations of the phonon spectrum within the FCC model for 

1D-QDSL with a modulated cross-section. We studied spectra and velocities of the 1D-QDSL. It 
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was demonstrated that modulated cross-section amplifies the effect of the acoustical mismatch of 

the materials and reduces thermal transport more effectively. It is demonstrated that contact of the 

acoustic mismatch materials leads to the redistribution of the phonon density of states toward lower 

energies. Together with phonon deceleration, it results in a reduction of the thermal transport. 

Thermal flux was calculated using the Boltzmann transport equation within the approximation of 

the relaxation time. In order to provide more accurate results, we used a one-dimensional density 

of states. We took into account three basic mechanisms of scattering: Umklapp, boundary, and 

impurity. It was shown that manipulation of such geometrical parameters as a cross-section, the 

difference between QDs’ cross-section in M-QDSL, translation period can enhance thermal drop 

in 1D-QDSL.  

Publications and approval of the obtained results  

The results of the current work were published in 8 articles, including 4 in international 

press visible in ISI Web of science/SCOPUS. The results presented in this work were discussed at 

32 international and national conferences. Two articles and two conference abstracts were 

published without co-authors. 
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10.1103/PhysRevB.85.205439 

2. ISACOVA, C., COCEMASOV, A., NIKA D. L., FOMIN, V. M. Phonons and thermal 
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4. FOMIN, V.M.; NIKA, D.L.; COCEMASOV, A.I.; ISACOVA, C.I.; SCHMIDT, O.G. 

Strong reduction of the lattice thermal conductivity in superlattices and quantum dot 

superlattices. In: AIP Conference Proceedings. 2012, vol. 1449, p. 33-36. DOI: 

10.1063/1.4731490 

5. ИСАКОВА, К. Падение фононной теплопроводности в сегментированных Si/Ge 

нанонитях. In: Studia Universitatis. Seria științe exacte și economice. 2015, nr. 2 (82),  

pp. 65-71. ISSN 1857-2073. 



15 
 

6. ИСАКОВА, К. Электронные, дырочные и экситонные состояния в кремниевых 

квантовых точках, помещенных в диэлектрическую среду оксида кремния. In: Studia 

Universitatis Moldaviae. Seria științe exacte și economice. 2011, nr. 7 (47), pp. 66-72. ISSN 

1857-2073 

7. ИСАКОВА, К., НИКА, Д., ПОКАТИЛОВ, Е. Экситонные состояния в квантовых 

точках Si/SiO2. In: Studia Universitatis Moldaviae. Seria Ştiinţe Reale şi ale Naturii. 2008, 

nr. 2(12), pp. 232-236. ISSN 1814-3237 

8. ИСАКОВА, К., НИКА, Д., АСКЕРОВ, А., ЗИНЧЕНКО, Н., ПОКАТИЛОВ, Е. 

Исследование кулоновского взаимодействия в квантовой точке Si/SiO2. In: Studia 

Universitatis Moldaviae. Seria Ştiinţe Reale şi ale Naturii. 2007, nr. 7, pp. 280-284 ISSN 

1814-3237.  

The results presented in this work were discussed at 32 international and national 

conferences: 

1. ИСАКОВА, К., КОЧЕМАСОВ, А., НИКА, Д. Фононная инженерия в одномерных 

наноструктурах. In: Rezumatele ale comunicărilor, Științele exacte, Științele ale naturii 

Conferinţa ştiinţifică naţională cu participare internaţională „Integrare prin cercetare şi 

inovare”, 10-11 Noiembrie, 2022. Chișinău, Moldova, pp. 293-296. ISBN 978-9975-152-48-

8 

2. ИСАКОВА, К., КОЧЕМАСОВ, А., НИКА, Д. Фононная инженерия в нанонитях и 

нанотрубках на основе кремния. In: Rezumatele ale comunicărilor, Științele exacte, Științele 

ale naturii Conferința ştiinţifică naţională cu participare internaţională ,,Integrare prin 

Cercetare şi Inovare”, dedicată aniversării a 75-a a Universității de Stat din Moldova, 10-11 

noiembrie, 2021. Chișinău, Moldova, pp. 194-196. ISBN 978-9975-152-48-8. 

3. ISACOVA, C., COCEMASOV, A., NIKA, D., FOMIN, V. Thermal transport in Si/SiO2 

nanoshell nanotubes. In: CMD2020GEFES, European Physical Society, 31 August – 4 

September, 2020. (online): 

https://www.cmd2020gefes.eu/_files/_event/_28512/_editorFiles/file/Scientific%20Program

_CMD2020GEFES.pdf.  

4. ISACOVA, C.I., COCEMASOV, A.I., NIKA, D.L., SCHMIDT, O.G., FOMIN, V.M. 

Phonon modes and thermal conductivity in Si/SiO2 multishell nanotubes. In: DPG Spring 

Meeting, 31 March – 05 April, 2019, Regensburg, Germany, DS 10.3.  



16 
 

5. ISACOVA, C.I., COCEMASOV, A.I., NIKA, D.L. Suppression of the thermal flux in 

Si/Ge and Si/SiO2 crosssection modulated nanowires. In: Book of abstracts of the 4th Central 

and Eastern European Conference on Thermal Analysis and Calorimetry (CEEC-TAC4). 

28−31 August 2017. Chisinau, Moldova, p. 84. ISBN 978-9975-9787-1-2. 

6. ИСАКОВА, К.Я., КОЧЕМАСОВ, А.И., НИКА, Д.Л. Зависимость теплопроводности 

сегментированных нанонитей на основе кремния от их геометрии и физических 

параметров материалов. In: Abstract book of the 18-th International Conference “Modern 

information and electronic technologies”, 22-26 May, Odessa, Ukraine, 2017, pp. 69-70. 

ISSN: 2308-8060 

7. ИСАКОВА, К. Падение теплопроводности в сегментированных Si/Ge нанонитях с 

переменным сечением. In: Rezumatele ale comunicărilor, Științele exacte, Științele ale 

naturii Conferința științifică națională cu participarea internațională „Integrarea prin 

cercetare și inovare”, 9-10 Noiembrie, 2017, Chișinău, Moldova, pp. 232-236. ISBN 978-

9975-71-701-4 

8. ISACOVA, C.I., COCEMASOV, A.I., NIKA, D.L. Strong suppression of the lattice 

thermal conductivity in silicon-based segmented nanowires. In: Abstracts of the 8th Int. Conf. 

on Materials Science and Condensed Mater Physics, MSCMP 2016, September 12-16, 2016, 

Chisinau, Moldova, p. 202. ISBN 978-9975-9787-1-2. 

9. ISACOVA, C., COCEMASOV, A., NIKA, D. Suppression of phonon heat conduction in 

cross-section, modulated nanowires. In: Book of Abstracts of the 3rd International Conference 

on Nanotechnologies and Biomedical Engineering, September 23-26, 2015, Chisinau, 

Moldova, S1-P.51. ISBN: 978-981-287-735-2 

10.  ISACOVA, C., COCEMASOV, A., NIKA, D. Suppression of phonon heat conduction in 

cross-section modulated nanowires. In: Rezumatele ale comunicărilor, Științele exacte, 

Științele ale naturii Conferința științifică națională cu participarea internațională 

„Integrarea prin cercetare și inovare”, 10-11 Noiembrie, 2015, Chișinău, Moldova, pp. 147-

148. ISBN: 978-9975-74-705-2 

11.  ИСАКОВА, К.Я., НИКА, Д.Л. Теплопроводность сегментированных Si/Ge 

нанонитей. In: Труды 14-ой Международной научно-практической конференции 

«Современные информационные и электронные технологии». Mай, 27-31, 2013, Одесса, 

Украина, pp. 158-159. ISBN 978-966-2666-04-5 



17 
 

12.  ИСАКОВА, К. Экситонные и фотолюминесцентные свойства кремниевых 

квантовых точек. In: Rezumatele ale comunicărilor Conferinţei ştiinţifice cu participare 

internaţională “Interferenţe universitare – integrare prin cercetări şi inovare”, Septembrie 

25-26, 2012, Chişinău, Moldova, p.154-156. ISBN: 978-9975-71-267-5 

13.  ISACOVA, C.I., COCEMASOV, A.I., NIKA, D.L., BALANDIN, A.A., FOMIN, V.M., 

SCHMIDT, O.G. Reduction of thermal conductivity in cross-section modulated silicon 

nanowires. In: Conference Proceedings of the “Modern information and electronic 

technologies”, June 4-8, 2012, Odessa, Ukraine, p. 295. 

14. FOMIN, V.M., NIKA, D.L., COCEMASOV, A.I., ISACOVA, C.I., CRISMARI, D.V., 

BALANDIN, A.A., Schmidt, O.G. Phonon heat conduction in one-dimensional quantum-dot 

superlattices and cross-section modulated nanowires. In: 2012 EMN Open Access Week, 

October 22-24, 2012, Chengdu, China, p. 39-40.  

15. NIKA, D.L., COCEMASOV, A.I., ISACOVA, C.I., CRISMARI, D.V., BALANDIN, 

A.A., FOMIN, V.M., SCHIMDT, O.G. Suppression of phonon heat conduction in undulated 

nanowires. In: 76th Annual Meeting of the DPG and DPG Spring Meeting, March 25-30, 

2012, Berlin, Germany, DS 33.4.  

16.  ИСАКОВА, К.Я., КОЧЕМАСОВ, А.И. Падение решёточной теплопроводности в 

нанонитях переменного сечения. In: Материалы XIX международной научной 

конференции студентов, аспирантов и молодых учёных «Ломоносов», 9-13 апреля, 

2012, Москва, Россия, Секция «Физика», Подсекция «Физика твердого тела», c. 46. 

https://lomonosov-msu.ru/archive/Lomonosov_2012/1880/29294_c41c.doc. ISBN: 978-5-

317-04041-3 

17.  ISACOVA, С.IA., NIKA, D.L., POKATILOV, E.P. Exciton states of Si quantum dots.  

In: Proceedings of the XIth International Young Scientists’ Conference on Applied Physics, 

June 15-18, 2011, Kyiv, Ukraine, pp. 117-118. 

18. ИСАКОВА, К.Я. Экситонные состояния в кремниевых точках. In: Материалы XVIII 

международной научной конференции студентов, аспирантов и молодых учёных 

«Ломоносов», 11-15 апреля, 2011, Москва, Россия, Секция «Физика» 

Подсекция «Физика твердого тела», c. 19-20. ISBN 978-5-317-03634-8 

19.  NIKA, D.L., ZINCENCO, N.D., ISACOVA, C.IA., POKATILOV, E.P., FOMIN, V.M., 

BALANDIN, A.A. Ultra-low lattice thermal conductivity of one-dimensional quantum dot 

Si/Ge superlattices. In: Book of Abstracts of the 5th International Conference on Material 

Science and Condensed Matter Physics, 13–17 September, 2010, Chişinău, Moldova, p. 206. 

ISBN 978-9975-66-190-4 



18 
 

20.  ИСАКОВА, К.Я., НИКА, Д.Л., ПОКАТИЛОВ, Е.П. Экситонные состояния в 

квантовых точках кристаллов кремния, помещенных в водную и воздушную среду. In: 

Труды 11-ой международной научно-практической конференции «Современные 

информационные и электронные технологии», 24–28 Мая, 2010, Одесса, Украина, 

часть 2, p. 103. 

21.  ИСАКОВА, К., НИКА, Д., ПОКАТИЛОВ, Е. Экситонные состояния и полосы 

фотолюминесценции в Si-квантовых точках в диэлектрической матрице SiO2. In: VII-th 

Scientific Abstracts of the International conference of young researchers, 5-6 November 2009, 

Chisinau, Moldova, p. 91. ISBN 978-9975-62-196-0. 

22.  ИСАКОВА, К., ПОКАТИЛОВ, Е., НИКА, Д., ТИМОШЕНКО, В. Экситонные 

состояния в кремниевых точках. In: Proceedings of conference of Moldovan physicists, 26-

28 November 2009, Chisinau, Moldova, p.143. 

23.  ISACOVA, C.IA., NIKA, D.L., POKATILOV, E.P. Exciton states in Si quantum dots 

imbedded into SiO2 dielectric matrix. In: Труды 10-ой международной научно-

практической конференции «Современные информационные и электронные 

технологии», 18–22 May, 2009, Ukraine, Odessa, часть 2, p. 103.  

24.  ИСАКОВА, К.Я., НИКА, Д.Л., ПОКАТИЛОВ, Е.П. Экситонные состояния и 

полосы фотолюминесценции в Si – квантовых точках в диэлектрической матрице SiO2.  

In: Тезисы докладов XVII Республиканской научной конференции аспирантов, 

магистрантов и студентов «Физика Конденсированного Состояния», 16 – 17 Апреля, 

2009, Гродно, Беларусь, pp. 114 – 115. ISBN 978-985-515-135-8 

25.  ISACOVA, C., NIKA, D., POKATILOV, E. Exciton states in Si quantum dots imbedded 

into the dielectric matrix. In: Scientific abstracts of International conference of young 

researchers, 6-7 November, 2008, Chişinău, Republic of Moldova, p. 113. ISBN 978-9975-

62-196-0 

26.  ISACOVA, C., NIKA D., POKATILOV, E. Exciton states in Si quantum dots imbedded 

into SiO2 dielectric matrix. In: Abstracts of the 4th International Conference “Material 

Science and Condense Matter Physics”, 23-25 September, 2008, Chisinau, Republic of 

Moldova, p. 218. 

27.  ISACOVA, C.IA., NIKA, D.L., POKATILOV, E.P. Development of charge-carriers 

states theory for Si quantum dots. In: Труды 9-ой международной научно-практической 

конференции «Современные информационные и электронные технологии», 19-23 Мая, 

2008, Одесса, Украина, часть 2, p. 106. 



19 
 

28.  ISACOVA, C.Ia., NIKA, D.L., POKATILOV, E.P. Development of charge-carriers 

states theory for Si quantum dots. In: Тезисы докладов XVI Республиканской научной 

конференции аспирантов, магистрантов и студентов «Физика Конденсированного 

Состояния», 23-25 April, 2008, Гродно, Беларусь, часть 2, pp. 116-117. ISBN 978-985-

515-102-0 

29.  ISACOVA, C., NIKA, D., POKATILOV, E. Exciton states in rectangular Si quantum 

dots, Scientific abstracts, In: Scientific abstracts of international conference of young 

researchers, November, 9, 2007, Chisinau, Moldova, p. 123. ISBN 978-9975-62-196-0 

30.  NIKA, D., POKATILOV, E., ISACOVA, C., TIMOSHENKO, V. Electron and hole 

states in Si quantum dots imbedded into dielectric medium: Role of the quantum dot shape 

and size. In: Proceedings of conference of Moldovan physicists, 11-12 October, 2007, 

Chisinau, Moldova, p. 17.  

31.  NIKA, D., POKATILOV, E., ISACOVA, C. Charge-carriers states in Si quantum dots 

with rectangular, conical and tetrahedral shapes. In: Scientific abstracts of international 

conference of young researchers, November, 9, 2007, Chisinau, Moldova, p. 125. ISBN 978-

9975-62-196-0 

32.  ISACOVA, C., NIKA, D., ZINCENCO, N., POKATILOV, E. Exciton states in 

rectangular Si quantum dots. In: Conference Proceedings of the Second annual international 

conference of young scientists “Computer Science and Engineering - 2007”, 4-6 October, 

2007, Lviv, Ukraine, p.231-233 

 

ACKNOWLEDGEMENTS 

The author wishes to extend sincere gratitude to their esteemed scientific advisor, Associate 

Professor D.L. Nika, for the invaluable guidance, unwavering assistance, and consistent 

encouragement generously provided throughout the entirety of this scholarly pursuit and its 

subsequent phases.  

The recognition of indebtedness is also extended to the esteemed memory of the late 

Professor E.P. Pokatilov, whose enduring legacy serves as an abiding source of motivation for 

scientific inquiry. The author expresses gratitude to the late Associate Professor S. I. Boldirev, 

whose scientific discussions and support also positively influenced the research. 



20 
 

Furthermore, the author conveys heartfelt appreciation to their esteemed colleagues at the 

“E. Pokatilov Laboratory of Physics and Engineering of Nanomaterials” at Moldova State 

University: A.A. Cliucanov, G.S. Korotcenkov, V.I. Brinzari, A.I. Cocemasov, A.S. Ascherov, 

N.I. Gaiu, L.I. Rosca, L.V. Tarakanova. The scholarly camaraderie and intellectually stimulating 

discussions offered by this group have undoubtedly contributed to the refinement of the author's 

insights and perspectives. The collaborative and enriching environment fostered by their collective 

efforts deserves sincere recognition and gratitude.  

The author would like to thank Professor V.M. Fomin for a valuable experience at the 

Institute for Integrative Nanosciences – Dresden. Fruitful collaboration and co-authorship are 

greatly recognized.  



21 
 

1. Cooperative phenomena in quantum dot nanostructures 

Spatial conferment of charge carriers and phonons in quasi 0D, 1D and 2D nanostructures 

strongly influence their conduction, thermal and optical properties as compared with bulk 

materials [6], [41], [42]. The unique physical properties of nanostructures ensure their wide 

applications in optoelectronic, thermoelectric, sensory and thermal management systems [6], [41–

45]. 

1.1. Electrons, holes, excitons and photoluminescence in nanostructures 

Production of silicon nanocrystals 

Silicon and silver nanodots (nanocrystals) are attracted a particular attention as non-toxic 

and biologically compatible nanopartclies [9–12]. More over, silicon nanodots are also 

complementary metal-oxide semiconductor (CMOS) compatible [9–11]. The production of silicon 

QD currently are produced mainly by electrochemical etching of bulk silicon [46], laser-driven -

pyrolysis of silane [47], gas phasesynthetics [48], [49], microemulsion synthesis [50], [51], wet 

chemistry techniques [52]. In the work [53] authors demonstrated hydrothermal synthesis using as 

silicon source (3-aminopropyl) trimethoxysilane (APTES) and sodium ascorbate as a reduction 

reagent to obtain water-dispersible and fluorescent Si-QDs. The transmission electron microscopy 

(TEM) and high-resolution transmission electron microscopy (HRTEM) analysis of these Si QD 

samples demonstrates the narrow size distribution (see Fig. 1.1), the diagram fits to Gaussian peak 

with relative standard deviation 17.5 %. The size  5 nm  makes them good for biomedical 

applications in vivo [54].  

Authors affirm that Si QDs PL shows stability in intensity, position and shape for six 

months because of the stable surfaces. Provided samples are not sensitive for pH in range of 2-12 

and preserve 90 % of PL intensity after 2 hours UV irradiation with 364 nm  light.  

Silicon nanocrystals is used to enhance photoluminescence properties of the other 

materials. For example, in [55] silicon NC are used to increase the photoluminescence intensity 

peak of Er3+ ions. Authors obtained SiO2 films with the embedded Si nanocrystals and doped with 

Er3+ ions by co-sputtering of Si, SiO2 and Er2O3 pellets. Films had thickness ~ 1 m  and were 

deposited onto quartz plates. After deposition, samples were annealed at 1100 C .  
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Fig. 1.1. TEM images of SI QDs;  

The diameter distribution of the Si QDs derived from several TEM images. 

Figure is adopted from Ref. [53] 

The easy synthesis, solubility, pH and photo stability, and good PL properties make Si QD 

produced by one-step hydrothermal procedure prospective candidates for biomedical application. 

   

(a)        (b) 

Fig. 1.2. Photoluminescence intensity of nc-Si and Er3+ ions for different nc-Si 

concentrations.  

(a) as function of the photon energy and (b) as function of the nc-Si diameter  

Figure is adopted from Ref. [55]  
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In Fig. 1.2 (a) the photoluminescence intensity dependencies are shown. In volume fraction 

of the silicon nanocrystals has varied between 0 – 21 %, while the concentration of the Er3+ were 

fixed at 0.04 %. As fraction of Si varied from 7 % to 21 % nanocrystals diameter changed from 

2.7 nm to 3.8 nm. Film thickness were constant and has a value of 1.2 m . Samples within porous 

silicon (without nanocrystals) have a very weak peak at 1.5 m  that corresponds to the intra-4f 

transition of Er3+ 4 4
13/2 15/2I I . It was shown PL intensity increases drastically by adding silicon 

nanocrystals and has maximum when volume fraction of silicon nanocrystals becomes 7 % (

 m2.7  nSid ). The further increase of Sid  from 2.7  nm  to 3.8  nm  leads to decrease of PL 

intensity. The samples with nc-Si shows a peak at ~ 0.8 m  (see Fig. 1.2(a)) that can be explained 

by recombination of the electron-hole pair [56] The high-energy shift of this peak with decreasing 

of Si nc size is caused by the widening of the band gap due to the quantum size effects. The PL 

intensity at 0.8 m  increases due to increase of the oscillator strength [57] and decrease of 

nonradiative Auger recombination process [58]. In Fig. 1.2(b) the intensities of the 1.54 m  and 

0.8 m  peaks as a function of Sid . The intensities were normalized at their maximum intensities 

obtained for  m2.7  nSid . We can see that intensity of PL of Er3+ ( 1.54 m )as well as the PL 

peak ( 0.8 m ) of nc-Si as Sid  decreases become more intensive. Although the intensity ratio of 

the 1.54 m  and 0.8 m  peaks does not depend on the size, it depends strongly on Er3+ 

concentration. Authors assume energy transfer from Si nanocrystals to Er3+. The excitation light 

is absorbed mainly by Si nc and electron-hole pairs are generated in ncs. A part of the 

recombination energy transfers to ions. The amount of the energy transferred from electron-hole 

pairs to Er3+ increases together with Er3+ concentration. The energy transfer is limited by the 

concentration of the optically active Er3+ ions, so intensity of 1.54 m  peak does not depend 

linearly on nc Si size. 
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Fig. 1.3. The PL intensity of the 1.54 μm peak as a function of a temperature.  

Figure is adopted from Ref. [55] 

In Fig. 1.3 the intensity of the 1.54 m  peak as a function of a temperature is shown. The 

degree of thermal quenching is only about 30 %  in the large temperature range (from 15 K  to

290 K ). This value is much smaller than that reported for the Er-doped bulk-Si crystal [59]. Very 

small thermal quenching has been observed for all the samples. 

Therefore, authors conclude that two main features of the quantum size effect of nc-Si, i.e., 

the band gap widening and the increases in the PL intensity with decreasing the nc size, improves 

room temperature PL efficiency of Er3+ ions. 

Bulk Si is widely used in electronics, but it has poor optical properties. But porous and 

nanocrystalline Si shows photoluminescence at visible wavelength at room temperature, which 

origin/provenience is not clear: highly located defect states or quantum confinement. In the 

work [60] authors report about classification and control of the photoluminescence origin in Si nc. 

They studied Si nanocrystals embedded in SiO2, that was formed after annealing of the 

SiO/SiO2 superlattice deposited on a Si substrate. Conform transmission electron microscopy 

annealed samples consists of 37 bilayers, layers with Si nanocrystals have thickness of ~ 1.5nm  

and dioxide layers have ~ 3nm  thickness. High-resolution TEM (HRTEM) showed that most 

nanoparticles have oblate form with ~ 3nm  in-plane diameter and ~ 1.5nm  dimension in 

direction perpendicular to layers. The images clearly show a crystalline Si core (see Fig. 1.4).  
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(a)        (b) 

Fig. 1.4. Images of Si nanocrystals embedded into SiO2 matrix. 

Figure is adopted from Ref. [60] 

(a) Image of a single Si nanoparticle along the [011] zone axis;  

(b) Bragg filtered image after subtraction of the background. This clearly highlights 

the <111> faceting of this nanoparticle.  

Photoluminescence origin 

In order to determine the origin of the PL, two types of experimented were conducted 

electron spin resonance (ESR) and magneto-PL. Two different defect centres were identified by 

ESR analysis, which are characteristic of Si/SiO2 interfaces. These type of defects are deep non-

radiative recombination centres, which reduce the PL Si nc in the 1.4eV 2.2  eV  range [61]. The 

estimated fraction of non-defect optically active Si nc is at least 30 % . 

Next, authors investigated the influence of UV irradiation of samples’ defects. After 

irradiation with UV light with UV light of ~ 362nm  for 71 h  by xenon lamp with interference 

filter the ESR was performed the signals from SiO2 specific centres. Then, the filter was removed 

and sample was irradiated with the same lamp with the full UV spectrum centred 8.2 eV  for 10 h  . 

the intensity of these centres increased drastically. The interface defect signals did not change after 

UV irradiation and they are fully activated. The ESR investigation shows that samples have a large 

number of defects, but none of them is PL-active. But this fact cannot exclude the defect origin of 

PL because interface defects are weakly observed in ESR [62–65]. To determine origin of the PL 

the experiments in pulsed magnetic field up to 50 T  were carried out at 85 K . The applied 

magnetic field has an associated length scale 


l
eB

, where   is the reduced Planck constant 

and e is the electron charge, which confines the wave function of the state under study before 

recombination, and hence increases the PL energy. The smaller the extent of the wave function, 
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the smaller the diamagnetic shift of the centre of mass of the PL: 
2 2

2

8CM

e
E B




  , where   is 

the reduced effective mass and 
1 22  is the average wave function extent in the plane 

perpendicular to the applied field. The energy shift should be significant so we can distinguish 

between a state confined to a few nanometres within a Si nanocrystal and a highly localized defect 

state. If the shift is very small, the QC origin of the PL cannot be excluded. In order to increase 

the shift authors have passivated the sample in 1 atm of pure hydrogen for 30 min  at a temperature 

of 400 C . This temperature does not influence the size and nature of the Si nanocrystals [66]. 

Then the ESR and PL measurements were repeated. After the passivation all traces of any defects 

have been removed, the only part that remains being the Si:P marker signal. The intensity of the 

PL signal has increased, consistent with the removal of the Pb defects. Authors assume that the 

passivation has also eliminated the ESR-inactive defects and PL has entirely QC origin. This can 

be seen in (Fig. 1.5 a) a parabolic shift of about 1.5 meV  was observed during the second 

magneto-PL experiment. After illumination for 8 h  near 95 %  of the interface defects being 

reactivated and the PL became totally of interface-defect origin, even if their PL may still be 

quenched by the reintroduction of P b-type defects Fig. 1.5. (b). 

 

Fig. 1.5. PL in Si nanocrystals embedded into SiO2 matrix 

(a) Shift of the centre of mass of the PL peak ( CME ) as a function of magnetic 

field at 85K after passivation the solid line shows the parabolic fit;  

(b) Effect of UV irradiation on a passivated sample Time dependence of the centre 

of mass (right-hand axis) and integrated intensity (left-hand axis) of the PL, after 

passivation and during irradiation with the UV lines of an unfocused Ar+ laser. The 

lines are fitted to the data using double exponential functions.  

Figure is adopted from Ref. [60] 
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It was shown that high magnetic fields can be used to distinguish defects generated PL 

from quantum confinement PL in Si nanocrystals embedded SiO2. Authors switched from defect-

related PL, to QC PL, and back in a single sample by a combination of passivation to remove 

defects and UV irradiation to reintroduce them. 

In PL and influence of the exciton migrations on it were studied in the work [67]. Authors 

obtained Si nc by evaporation of the SiO superlattice and subsequent thermally induced phase 

separation. The nc-Si were prepared by alternative evaporation of SiO powder in either vacuum or 

oxygen atmosphere to create a SiO/SiO2 superlattice [68]. Thickness of the SiO layers was in the 

range 1 nm 6 nm , while SiO2 layers thickness was 4 nm . The evaporated samples were 

annealed at 1100  C  in N2 atmosphere. This method allows size-control synthesis of Si-nc 

completely passivated with SiO2.  

Photoexcited Si has inefficient light emission due to the indirect band gap in the bulk Si. 

In the case of the Si nc the probability of the indirect transition increases with the decries of the nc 

size due to the spatial confinement. At the same time the electron, hole and exciting binding 

energies increase, too (see Fig. 1.6). It results in the blueshift of the PL energy [61], [69–72]. The 

exciton energy is split into triplet and singlet states. The radiative lifetime of the electron-hole 

recombination represents the thermal equilibrium of the lifetime of the triplet and singlet state 

[69]. 

  

Fig. 1.6. Dependence of confinement energy 

(the sum of the difference between electron and hole confined energies and electron-hole 

interaction) on Si crystal size measured by XRD for PL measured at 300 K .  

Figure is adopted from Ref. [67] 

Besides radiative or non-radiative recombination the exciton migration between adjacent 

ncs influences its optical properties in the case of the extremely long radiative lifetimes of excitons 
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in Si in large temperature range. This mechanism of exciton migration together with Gaussian size 

distribution explain the stretched exponential time decay of the PL signal [73–75]: 

  0 exp
b

t
I t I


     

   
, where  I t  stands for PL intensity at the time t and b  is the dispersion 

factor. This mechanism is used for porous Si and shows qualitatively the same trends for Si nc 

embedded in SiO2 matrix [70], [75], [76]. Quantitative difference can be explained by the fact that 

in nc exciton migrates into more energetically favourable low state. The temperature dependencies 

of the PL peak and full width at half maximum (FWHM) indicate a significant influence of the 

excitonic migration on the optical properties of layers (see Fig. 1.7). Though, the thermalization 

of the exciton could not fully explain difference between PL in porous silicon [71] and Si nc, 

especially at low temperatures. Measurements made at low temperature indicate on the existence 

of the intermediate layer with lower potential barrier. The formation of a SiO shell around Si nc is 

probable during the phase separation of the SiOx into Si and SiO2. A lower band gap of the 

surrounding matrix leads also to a higher migration probability and very strong migration effects.  

The described effects could be explained by electron-hole recombination. The smaller band 

gap of dielectric matrix and very high density of Si nc increase migration probability of the 

excitons between the crystals. This can explain the quantitative size dependence of the different 

confinement effects. 

 

Fig. 1.7. Temperature dependencies of PL  

(a) PL peak position as a function of temperature for the sample with a 4-nm-thick SiO 

layer. The solid line shows the best fit to the experimental data from 50 K  to 300 K  

according to  I t  equation;  

(b) FWHM of the PL signal as a function of temperature for the sample with a 4-nm-thick 

SiO layer.  

Figure is adopted from Ref. [67]  
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Silver nanodots applications 

The PL engineering and control in nanostructures give wide spectra of silver nanodots’ 

application that were impossible for analogic bulk materials. In the work [77] authors reported 

about developing of silver nanodots for biological applications. Silver nanodots (Ag ND) are the 

class of fluorophores with photophysical properties similar to semiconductor quantum dots. Ag 

NDs have various applications as photoluminescent and electroluminescent materials, probes and 

biolabels due to high luminescence quantum yields, large molar extinctions, and excellent 

photostability. Silver NDs produce higher emission rates and molecular brightness than available 

organic dyes [78]. Silver emitters in different energy ranges show significant improvement of the 

two-photon absorption cross sections in comparison with the organic ones even for smaller Ag 

QD, this fact make them promising candidates for optical in vivo imaging [79], [80]. The 

experiments demonstrate high photostability, persistent emission rates and brightness of Ag ND 

[78], [80], [81]. The first problem of the Ag ND creation is the propensity of silver clusters toward 

oxidation and their vulnerability to other electron acceptors. Besides that, silver atoms demonstrate 

tendency to agglomerate, preventing formation of nanoclusters. 

The solid matrices formed from glasses [82] and zeolite [83], [84] act as a shield for Ag 

ND from their oxidation and agglomeration. Silver ND can be formed on different surfaces by 

thermal, chemical or photo-reduction. Silver clusters formed on silver halide microcrystals show 

luminescence on cryogenic temperatures with emission bands at 550 nm , 590 nm , 640  nm  

[85], [86], which is lost at the room temperature. The room temperature emission is shown for Ag 

nanoclusters formed on photo-reduced surfaces of silver oxides [87]. The nanoclusters formed on 

oxyfluoride show large emission wave range (see Fig. 1.8).  

 

Fig. 1.8. Normalized emission and excitation spectra of the oxyfluoride glass doped with 5 

wt% AgNO3.  

Figure is adopted from Ref. [82] 
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The emission bands in type A zeolite (Agx, K-A) depend on the silver loading ratio x. For 

silver content 3x  , the zeolite samples show a broad emission band in the range 

530 nm  580 nm  . As the silver content increases up to 6x   the emission band shifts to 

690 nm  . In the case if x takes values 7–10 the band near 550  nm  disappear. For saturated 

zeolites (x = 11 to 12) the main emission band blue-shifts from 690 nm  to 590  nm  [84]. Silver 

nanoclusters in solid matrices are promising candidates for information storage and light emitting 

materials. 

For bioapplications the Si nanodots should be soluble and stable as well. Silver nanodots 

were produces by photoactivation in as a core in polyglycerol-block-poly-acrylic acid. The sample 

showed stable emission during more than 9 hours of the continuous irradiation [88]. The mixture 

of silver ions poly(methacrylic acid) shows microseconds lifetimes if are irradiated with visible 

light instead of UV light. The increase of silver-methacrylic molar ratio leads to the red-shift of 

the absorption and emission peaks [89].  

Reports on peptide-protected nanodots sample shows excellent stability under physiological 

conditions [90–92], see Fig. 1.9. The stability of silver nanodots depends on peptide sequence: for 

peptide with short sequence chemical lifetime is 3 days at room temperature, but longer peptide 

sequences can extend it up to 2 weeks in deionized water and 5 weeks in phosphate buffered saline. 

 

Fig. 1.9. PL intensity in the protein/peptide-protected silver nanodots.  

(a) Argyrophilic proteins are good templates for the generation of silver nanodots. These 

nanodots are quite photostable, with a low photobleaching rate after an initial decrease in 

emission intensity  

(b) The peptide-protected silver nanodots show red emission with large Stokes shift  

Figure is adopted from Ref. [80]. 
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The photoluminescence properties of silver ND strongly depend on how scaffold protect 

them from environment interactions, which van enhance or quench emission. This fact makes 

silver nanodots good candidates for sensors. The DNA-encapsulated silver nanodots demonstrate 

PL quenching for low concentrations of Hg2+ [78]. Also, they have good selectivity: ions Co2+, 

Ni2+, Pb2+ and Zn2+ do not affect the emission intensity of the nanodots, but others, such as Cu2+, 

Fe2+, Fe2+, Mn2+ cause slight quenching of emission. In the work [93] the detection of Cu2+ by Si 

ND embedded in PMAA shield. The intensity of emission drastically falls at copper concentration 

4.5 10 × M. Other ions such as Co2+, Ni2+ and Fe3+ do not reduce intensity such significantly. 

DNA-encapsulated nanodots demonstrate increase of the PL in the presence of the Cu2+ [94]. 

Authors demonstrated good selectivity and sensitivity of DNA-protected Ag ND (see Fig. 1.10) 

after introducing of 3-mercaptopropionic acid (MPA). The PL responds strongly to a concentration 

of 0.5 mM Cu2+ ions, while the respond is weak to the other metal ions with the concentration 

50 mM. 

  

Fig. 1.10. Detection of copper(II) by DNA/Ag/Cu.  

(a) Selectivity towards copper(II);  

(b) Sensitivity demonstration. IF0 and IF are the PL intensities of the in the absence and presence 

of copper cations, respectively. Inset: linear range of the plot of (IF0 - IF)/IF0 as a function of Cu2+ 

concentration (0–0.2 μM)  

Figure is adopted from Ref. [94]. 

The theoretical study of the exciton in nanostructures 

Different theoretical approaches have been employed to study exciton and 

photoluminescence properties of nanostructures: effective mass approach [34], [95–99], tight-

binding [100–102] and density functional theories [103], [104]. Although these models can predict 

different values of exciton energies in nanostructures, they made qualitatively identical 

conclusions regarding blue-shift of exciton energy and basic mecanisms of photoluminescence. It 
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has been established that EMAs with multi-band hamiltonians predict exciton energies in a good 

agrement with existing experimental data for different nanostructures if their lateral dimensions 

exceed 2 nm [34], [96], [97], [105], [106]. 

In the work [34] authors theoretical analysis of the exciton states in AlGaN/GaN quantum 

well heterostructures using asymmetric six-band Hamiltonian for holes and one-band Hamiltonian 

for electron. 

The electron states in QD one band Schrodinger equation: 

           ˆ ˆ
e s e P e e c c SA eH H r V z H r E z V z    

 
,        (1.1) 

where  ˆ
s eH r


 is the kinetic part,  SA hV z  is the hole self-interaction energy [105],  c eE z  height 

of potential barrier. 

The replacement of the six-band Hamiltonian with the one-band Hamiltonian for heavy, 

light, and split-off holes lacks sufficient justification, as the binding energy of the ground exciton 

level depends on the effective mass of all three types of holes [106]. The one-band Hamiltonian 

only yields fully symmetrical s-like hole and exciton ground states, while a multiband Hamiltonian 

can provide a solution with a p-like ground state. The symmetry of the exciton state is crucial for 

selection rules and the interpretation of photoluminescence (PL) experimental data. By considering 

the nonsymmetric six-band Hamiltonian, the mixing of light, heavy, and spin-orbit split-off holes 

is appropriately accounted for. 

The six-band Hamiltonian has form 

 
 

   
ˆ ˆ 0ˆ ˆ ˆ ˆ ˆ

ˆ ˆ0

e
XYZ h h

h S O h h h SA he
XYZ h h

H r H
H H eFz I E z I V z I

H r H 


     





 , (1.2) 

where  h hE z  is hole barrier height,  SA hV z  is the hole self-interaction energy [105], Î  is the 

6 × 6 unit matrix, ˆ
S OH   is the spin-orbit Hamiltonian [107], ˆ e

hH  is the deformation interaction 

Hamiltonian [107], X YZH  is the 3 × 3 matrix representing the kinetic energy in the Hamiltonian 

for unit cell in the basis X , Y , Z  and depends on Rashba-Sheka-Pikus parameters of the 

valence band [108].  

The exciton Hamiltonian  

     ˆ ˆ ˆ ˆ, ,exc e e h h C e h e hH H r H r V r r z z I   
   

     (1.3) 

includes electron and holes Hamiltonian and energy of the electron-hole Coulomb interaction. 
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In Fig. 1.11 the comparison of the theoretical and experimental exciton energies in the 

Al0.24Ga0.76N/GaN heterostructure are shown. Inset shows the difference between theoretical 

energies calculated in the six-band approach [34] and one-band approach [109] 

 

Fig. 1.11. Well-width dependence of the calculated exciton transition energies in an 

Al0.24Ga0.76N/GaN heterostructure and the experimental peak positions. 

 Inset: Deviations D of the present results from those calculated in Ref. [109].  

Figure is adopted from Ref. [109] 

 

Fig. 1.12. Photoluminescence spectra of an Al0.17Ga0.83N/GaN MQW 

heterostructure with four 16 ML QWs and 30 nm barriers.  

Figure is adopted from Ref. [109]  

In Fig. 1.12 the PL as function of the energy is shown. The positions of the PL peaks and 

their relative intensities obtained theoretically are in fair agreement with the experiment of 

Ref. [110] 
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1.2.  Phonons engineering in semiconductor nanostructures 

Phonons play an important role in the majority of physical processes in semiconductor 

materials: they interact with charge carriers and limit their mobility, affects optical properties and 

carry heat [1]. Spatial confinement of phonons in nanostructures significantly change phonon 

properties in comparison with bulk materials because the phonon mean free path in nanostructures 

become comparable to nanostructure spatial sizes (thickness or length) [1], [5], [18], [111–113]. 

S. Rytov [113] has demonstrated that in planar lamellar medium folded phonon modes appear. 

Further investigations have revealed strong modification of phonon energy spectra and phonon 

group velocities in planar nanostructures and nanowires which affects all phonon-assisted 

processes. 

Continuum model for phonons in nanostructures 

Initial theoretical investigations of phonon confinement in homogeneous films and 

nanowires as well as in multilayered planar heterostructures and core-shell nanowires were 

undertaken employing continuum approach. In the framework of this approach the equation of 

motion for elastic vibrations can be written as [114], [115]: 

2

2
m mi

i

U
xt

 





 ,   (1.1) 

where  1 2 3, ,U U U U


 is the displacement vector,   is the mass density of the material, mi is the 

elastic stress tensor given by mi mikj kjc U , 
1
2

jk
kj

j k

UU
U

x x
 

  
   

 is the strain tensor, i=1,2,3 and 

m = 1,2,3. 

In the non-uniform media the elastic modules are the piece-wise functions of 𝑟: 

 m ik j m ikjc c r
 .    (1.2) 

 

Figure 1.13. The schematic view of the researched  

     (a) thin film and (b) three-layered heterostructure  

Figure is adopted from Ref. [111] 



35 
 

For planar nanostructures (see Figure 1.13) Eq. 1.1 splits into a system of two interrelated 

differential equations for the amplitudes u1 and u3 and a separate differential equation for the 

amplitude u2 [111], [116]:  

       
2

2 3 2 32 244
2 3 44 66 2 32

3 3 3

,    
d u x du xdc

u x c c q u x
dx dx dx

  (1.3) 
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   (1.4) 

In Eqs. (1.3 - 1.5) '
3 3u u i  and i is imaginary unit. We note here that Eqs. 1.2-1.3 were derived 

in the following assumptions: 

 axis X1 and axis X2 of the Cartesian coordinate system are in the plane of the layers; 

 acoustic waves propagate along axis X1; 

 four indexes (mikj) of elastic modules are converted into two indexes (nl) according to the 

prescription: (1111)(11); (2222)(22); (3333)(33); (1122)(12); (1133)(13); 

(1313)(44); (2323)(55) and (1212)(66); 

 crystal lattice of layer’s materials possesses hexagonal symmetry, i.e. there are only five 

independent elastic constants 11 12 13 33, , ,c c c c and 44c : 

11 12

11 12 13

12 11 13

13 13 33
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Fig. 1.14. Schematic view of a rectangular core/shell nanowire.  

Figure is adopted from Ref. [117] 

In the case of rectangular nanowires when axis X3 is directed along nanowire axis (see Fig. 1.14) 

Eq. 1.2 can be re-written as follows [117]: 

 
2 2

2 2 1 1 11 1
44 1 11 662 2

1 11 2

u u c uc q u c c
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The system of two-dimensional differential equations Eqs. 1.5-1.7 can be simplified in the case of 

cylindrical nanowires (see Fig. 1.15) [118] to the system of one-dimensional differential equations: 
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Fig. 1.15. A schematic view of a core/shell cylindrical nanowire.  

Figure is adopted from Ref. [118]. 
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Two opposite types of boundary conditions were employed in Refs. [111], [116–118] 

both for planar nanostructures and nanowires: free external boundaries (FES) and clamped external 

boundaries (CES). Free external boundaries correspond to free-standing nanostructures [112], 

[119], [120] when force on the external surfaces is equal to 0, i.e. force components 1 2 3 0.  P P P  

Clamped external surfaces represent a theoretical limit when external surfaces are immovable (this 

limit cannot be experimentally reached): 1 2 3 0.  u u u  
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Phonon properties of three-layer planar nanostructures with GaN inner layer and 

core/shell nanowires with GaN core were investigated in Refs. [18], [111], [116–118], [121], using 

elastic continuum approach. Authors have demonstrated that phonon energy spectra in 

nanostructures consisting of layers from different acoustic materials (like GaN and AlN or Si and 

Ge) strongly differs from those in homogeneous slabs or wires. It has been theoretically established 

the following peculiarities of energy spectra in multi-layer nanostructures:  

 Depending of the wave-vector q phonon modes demonstrates behavior similar to 

transversal acoustic or longitudinal acoustic modes of corresponding bulk materials. For 

example, in AlN/GaN/AlN planar heterostructure or GaN/AlN core/shell nanowires 

phonon modes can be (GaN, TA) bulk-type, (GaN, LA) bulk-type, (AlN, TA) bulk-type 

and (AlN, LA) bulk type. Similarly, in Ge/Si/Ge nanostructures modes can be divided into 

four groups: (Si, TA) bulk type, (Si, LA) bulk-type, (Ge, TA) bulk-type and (Ge, LA) bulk-

type phonons. 

 Evident straight lines combining segments of energy curves with close slope appears in the 

phonon energy spectra (see lines L, L’ in Fig. 1.16 and Fig. 1.19). 

 For large values of q all phonon modes become (GaN, TA) bulk-like in the case of 

AlN/GaN/AlN heterostructures or GaN/AlN core/shell nanowires and (Ge, TA) bulk-like 

in the case of Ge/Si/Ge heterostructures or Si/Ge nanowires (see Fig. 1.17 and Fig. 1.20). 

 Phonon group velocities for all phonon branches demonstrates non-monotonic behaviour 

and possess values between bulk LAv and TAv  values of corresponding materials. At large 

q phonon velocities tends to TAv  (GaN) in nanostructures with GaN-channel and to vTA(Ge) 

in nanostructures with Si-channel. 

 Claddings/shell made from material with lower sound velocity than in the internal layer 

(core) decrease average phonon group velocity of nanostructure; claddings/shell made 

from material with higher sound velocity demosntrate an opposite effect and increase 

average phonon group velocity of nanostructure in wide energy range. This effect is 

illustrated in Fig. 1.20, where dependence of average phonon group velocity on phonon 

energy is shown from GaN nanowires, GaN/AlN and GaN. Plastic (Pl) core/shell 

nanowires. Average velocity in GaN nanowire with plastic shell is substantially lower that 

that in bare nanowire, while average velocity in GaN nanowire with AlN shell is higher 

than that in the bare nanowire for energy ranges: ℏ𝜔 < 4 meV and ℏ𝜔 > 7 meV phonons.  
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Fig. 1.16. Energy dispersion of the SA and AS acoustic phonon modes in slabs and 

heterostructures. 

(a) homogeneous GaN slab with thickness of 6 nm ; 

(b) AlN/GaN/AlN heterostructure with dimensions 2.5 nm  / 1.0 nm / 2.5 nm ; 

(c) AlN/GaN/AlN heterostructure with dimensions 1.0 nm / 4.0 nm / 1.0 nm ; 

(d) AlN slabs with thickness of 6 nm ; Insets show the geometry of the slab and three-

layered structure.  

Figure is adopted from Ref. [111]. 
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Fig. 1.17. Phonon group velocities as a function of phonon wave vector for the SA 

acoustic phonon modes in AlN/GaN/AlN heterostructure  

(a) homogeneous GaN slab with thickness of 6 nm ; 

(b) AlN/GaN/AlN heterostructure with dimensions 2.5 nm  / 1.0 nm / 2.5 nm ; 

(c) AlN/GaN/AlN heterostructure with dimensions 1.0 nm / 4.0 nm / 1.0 nm ; 

(d) AlN slabs with thickness of 6 nm ; Insets show the geometry of the slab and three-

layered structure.  

Figure is adopted from Ref. [111]. 

Despite the fact that numerous studies have employed continuum approach for modelling 

of phonon and thermal properties in nanostructures both qualitatively and quantitatively, the 

applicability of this approach has important limitations: (1) it does not take into account an 

atomistic structure of investigated material; (2) the number of continuum phonon modes is 

formally infinite and it is necessary to artificially cut off the maximal phonon energy spectra; (3) 

at large values of q velocities of continuum phonon modes are not zero and tend to transversal 

acoustic sound velocity.  
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Fig. 1.18. Phonon dispersions for the dilatational modes for free-surface (a–c) and clamped-

surface (d) boundary conditions at the external barrier boundaries.  

(a) The results are shown for GaN nanowire of the 4  nm 3 nm  cross section without the 

barriers;  

(b) GaN nanowire with acoustically fast AlN barriers of the 4  nm 6 nm  and 2  nm 3 nm  

GaN nanowire cross sections;  

(c) GaN nanowire with acoustically slow barriers of the 4  nm 6 nm  and 2  nm 3 nm  GaN 

nanowire cross sections.  

(d) GaN nanowire with acoustically fast AlN barriers of the 4  nm 6 nm  and 2  nm 3 nm  

Figure is adopted from Ref. [117]. 
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Fig. 1.19. Phonon energy as a function of the phonon wave vector q for the breathing modes 

(m = 0). 

(a) GaN nanowire with the „acoustically soft” barrier layer (   1  6 nmR GaN  and  10  nmR );  

(b) GaN nanowire without the barrier layer (  6  nmR ). The insets show the geometry of the 

nanostructures.  

Figure is adopted from Ref. [118]. 

Limitations of continuum approach have stimulated theoretical investigations of phonon-

assisted processes using dynamic models of lattice vibrations, molecular dynamic simulations or 

density-functional theory [7], [22], [122–126]. 

The detailed comparison between phonon energies, phonon group velocities and thermal 

conductivities in Si nanolayers calculated using continuum approach and face-centred-cubic cell 

model of lattice vibrations is presented in Ref. [32]. It has been established that both energies of 

phonon modes and behavior of phonon energy curves calculated in the framework of FCC model 

is different from those calculated using CA (see Fig. 1.21). Authors also found that the CA 

overestimates the values of the thermal conductivity for medium and high temperatures in 
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comparison with FCC model due to an overestimation of phonon group velocities near the 

Brillouin zone boundary. 

 

Fig. 1.20. Average phonon group velocity as a function of the phonon frequency 

(a) for dilatational modes in rectangular GaN, GaN/AlN and GaN/Plastic nanowires; 

(b) for breathing modes in cylindrical uncoated GaN nanowire and GaN nanowire with 

acoustically soft barrier. 

Figure is adopted from Refs. [117], [118]. 

A study of phonon and thermal properties of three-layered planar structures with an inner 

silicon layer using the FCC model is reported in Ref. [38]. It has been demonstrated that similarly 

to CA the claddings strongly influence on thermal flux. Diamond claddings with higher sound 

velocity than in silicon enhance thermal flux by a ratio of 3, while plastic claddings (with sound 

velocity smaller than in silicon) decrease thermal flux by a ratio of 1.2 – 1.4. This effect is 

illustrated in Fig. 1.22 where phonon thermal flux is shown as a function of temperature for 

different Si-based planar nanostructures. Qualitatively similar results have been reported for 

core/shell Si/Ge nanowires, using FCC and VFF models of lattice vibrations as well as molecular 

dynamics [7], [8], [22], [125]. Thus, multi-layer nanostructures provide a good opportunity for 

engineering of their phonon and thermal properties. 

Other prospective candidates for efficient phonon engineering are cross-section-modulated 

and segmented nanowires. Using both FCC and BVK models of lattice vibrations it has been 

demonstrated that phonon thermal flux can be sufficiently suppressed in such nanowires [23–25]. 
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Fig. 1.21. Phonon energies as the functions of the phonon wavevector  

for Si layer with d =3.258 nm plotted for 

(a) FCC-model and (b) continuum approach.  

Figure is adopted from Ref. [118]. 

 

Fig. 1.22. Thermal Flux as the function of temperature for Si slab and three-layered planar 

nanostructures with inner Si layer.  

Figure is adopted from Ref. [38]. 
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1.3. Conclusions to Chapter 1 and objectives of the Thesis 

Different nanostructures continue to attract significant attention from the research community 

due to their unique optical, transport, and sensing properties. Superlattices with Si quantum dots 

have been particularly demonstrated as CMOS-compatible and non-toxic sources of energy for 

both radiative and non-radiative energy transfer. For investigation of exciton and optical properties 

of nanostructures both effective mass approach and tight-binding models were widely employed. 

The theoretical investigation of phonon modes and thermal transport in nanostructures was 

undertaken using the continuum approach, FCC and VFF models of lattice vibrations, molecular 

dynamics, and density functional theory. It has been demonstrated that multi-layer nanostructures 

possess wide possibilities for charge-carrier or phonon engineering by tuning their shape and size 

as well as layer materials. At the same time, there is some lack of investigation of exciton and 

phonon processes in quasi-one-dimensional quantum dot superlattices. 

The main goal of the Thesis is a comprehensive theoretical investigation of exciton, phonon, 

and thermal properties of quasi-one-dimensional Si-based nanostructures (1D-QDSL and 

core/shell nanotubes) and their optimization for optical, energy transfer, and thermal management 

applications. To achieve this goal, the following objectives are formulated: 

 Development of theoretical models for electron, hole, and exciton states in Si-based 1D-QDSL;  

 Investigation of electron, hole, exciton, and photoluminescence properties of Si-based 1D-

QDSL and their optimization for optical and energy transfer applications;  

 Development of theoretical models for phonon states and thermal conductivity in Si-based 

QDSL and Si/SiO2 multi-shell nanotubes; 

 Investigation of phonon and thermal properties of Si-based 1D-QDSL and Si/SiO2 MNTs and 

their optimization for heat management applications. 

The following methods and approaches are used in the Thesis: 

1) Multi-band effective-mass approximation for the investigation of electron, hole, and 

exciton states 

2) Face-centred-cubic cell model of lattice vibrations for the investigation of phonon states; 

3) Boltzmann transport equation with relaxation time approximation for the investigation of 

thermal transport.   
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2. Exciton processes in Si-based quantum dot nanostructures 

In this Chapter, we investigate confined electron, hole, and exciton properties in silicon-

based quantum dots (QDs) of different shapes embedded in the dielectric matrix using effective 

mass approximation. One-band k p  Hamiltonian for electrons and one- and three-band k p  

Hamiltonians for holes are employed for calculations of the charge carriers’ energy spectra. Our 

model also takes into account both finite the height of a potential barrier at QD interfaces and the 

strong anisotropy of an electron effective mass in silicon. We analyze the impact of heavy, light, 

and spin-off holes mixing on the exciton energies and compare our results with experimentally 

available data. Taking into account a possible size distribution of nanocrystals we interpret the 

broadening of exciton PL peaks and dependence of its position on an annealing temperature 

reported experimentally in Refs. [13], [127], [128]. The discussions in this Chapter mostly follow 

the author’s original articles [98], [129]. 

2.1. Electron states is Si-based quantum dot nanostructures 

The electron energy states in QDs were obtained from the Schrodinger equation. Its general 

form is: 

           e e e e
n e n n eH r E r  

  
, (2.1) 

where   eH  – is the Hamilton operator,  e
nE is the electron energy and  e

n  is the electron wave 

function. Index n corresponds to number of energy level. 

In the effective-mass approximation Hamiltonian takes form:  

 

     
     

2 1 1 1ˆ
2

e e e
b e SA
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      
      
       


   , (2.2) 

where,  e
n  and  e

nE are the electron wave function and electron energy in n-th state, 

correspondingly;  i em r


 is the electron effective mass where index , ,i x y z ,   is the Planck’s 

constant,  e
b eV r  is the electron barrier potential,    e

SA eV r  is electron self-energy. Eq. 2.2 was 

solved using finite difference method. 

Different effective masses along x, y and z axes in Eq. (2.2) take into account peculiarities 

of conduction band in bulk Si that possess 3 not degenerated energetic subbands. Position of the 

absolute minima determines bottom of the conduction band. In the silicon it lies along [100] 

direction, so there are 6 equivalent energy minima (see Fig. 2.1) [15]. These minima are also called 
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valleys. Isoenergetic surfaces represent ellipsoids that rotates about its major axis and have the 

form: 

   0E k E k   
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where    00.19x y tm m m m  is transversal component of the effective mass; while

  00.98z lm m m  is longitudinal component, 0m  is the electron effective mass. 

     

Fig. 2.1. Schematic view of silicon ellipsoids in the conduction band.  

Figure is adopted from Ref. [130] 

In the case of the semiconductor QD embedded in dielectric media electron barrier energy 

    e e
bV r  depends on electron position and can be presented by the stepwise function: 

  0,insideQD
,outsideQD

e
bV V





, (2.4), 

where V is the height of potential barrier at the interface between QD and surrounding media. 

Electron’s potential self-energy 
    e e
bV r  appears due to the interaction between electron and 

medium polarized by it:  

    
      
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  

 
  

   , (2.5) 

where CoulombV  is the Coulomb interaction energy, er


 is the electron radius-vector, e  is the electron 

charge, 0  is the vacuum permittivity and  r
  is the dielectric constant.  
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Fig. 2.2. Distribution of the self-action energy values along OX. 

Taking into account the charge self-action energy at the interface between a semiconductor 

and a dielectric is important for a quantitative description of the electronic properties of 

semiconductor/dielectric systems. Self-interaction leads to a modification of the energy spectra 

and wave functions of electrons and holes. It can affect the distance between different energy levels 

and can influence the emission and absorption spectra.  

The distribution of the self-action energy along OX axis is shown in the Fig. 2.2 for the 

spherical Si QD with the diameter  3.0 nmD . It is clearly seen that near the QD/shell interface, 

self-action energy changes its sign due to the different electrical permittivity of the materials (it 

means than attraction is changed to repulsion and wise versa). 

Electron states in individual quantum dots: role of shapes and material parameters 

The dependence of the electron energy in cuboid QD on potential barrier height is depicted 

in Fig. 2.3. The electron levels are presented for QD with dimensions              3 nmx y zL L L . We 

consider here two of six energy ellipsoids (see Fig. 2.1) with light transversal effective masses 

00.19tm m  along OX and OY axes and hard longitudinal one 00.98lm m  along OZ axis. 

Qualitatively similar results can be obtained for the rest four ellipsoids. 

In the Fig. 2.3 five lowest electron levels are shown. Model barrier material possesses the 

same effective electron mass as in SiO2 0   m m . The barrier energy varies in the range 

400 meV 4000 meV . The levels with quantum numbers    2xn  ,      1yn  ,    1zn   and    1xn  , 

     2yn   ,    1zn   are two-fold degenerated because QD facets have equal dimensions and equal 

effective electron masses along OX and OY axes. The electron energy increases together with the 

potential barrier bV for all energy levels. The curve’s slope is smaller for energies higher than 

~ 1000 meV . The energy distance between levels also increases with rise of bV . These effects 

take place due to reinforcement of spatial confinement for electrons.  
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Fig. 2.3. Electron energy states in dependence on the height of the potential barrier 

in Si cuboid QD.  

The shape of the QDs strongly influences the electron energy spectra. In Fig. 2.4 the 

electron energy and electron wave functions for different QD shapes are depicted. In panel (a) the 

electron levels are shown for spherical QDs, while electron spectra of double truncated pyramidal 

QDs (DTPQD) are depicted in panel (b). Electron levels for cuboid, pyramidal, and conical QDs 

are provided in panel (c). The height of non-spherical QDs is directed along OZ axes, and their 

cross-section are in the XOY plane. The electron energies in panels (a) and (b) are shown as a 

function of the spherical QD’s diameter, while in panel (c) as a function of QDs’ volume. In the 

case of the double truncated pyramidal QDs (panel (b)) diameter D corresponds to spherical QDs 

with the same volume. In order to obtain the same volume for non-spherical QDs in Fig. 2.4(c) we 

fixed the base of pyramidal or conical QDs and varied their height. The considered volume range 

3 34nm 36nm  approximatively corresponds to the volumes of spherical QDs with diameter 

from 2nm  to 4 nm  . 
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 (a)       (b)  

 

(c)    

Fig. 2.4. Electron energy diameter and electron wave function in Si QDs of different 

shapes. 

(a) in spherical QD; (b) In DTPQD; (c) in cuboid, pyramidal and conical QDs. 

The 7 lowest electron levels for spherical and double truncated pyramidal Si QDs are 

shown in panel (a) and (b), respectively. For cuboid, pyramidal, and conical QD only ground 

electron level are depicted. In the spherical QD pairs of 4 – 5 and 6 – 7 levels are twofold 

degenerated due to the spherical symmetry of QD and 2 identical effective mass components 

00.19tm m . The energy of electrons and energy distance between their levels decrease while 

QD’s dimensions increase because the confinement of the electrons becomes weaker. The ground 

level of the spherical QD is lower than in the QD of the other forms. Ground level has 

approximatively the same values in the conical and DTP QD and is lower than in the cuboid and 

pyramidal QDs for the presented volume range. The ground state energy of the cuboid QDs is 

higher than that in the pyramidal QDs for volumes lower than 312nm , while for larger volumes 

Cuboid QD  



51 
 

the opposite situation takes place and ground electron energy in cuboid QDs are lower than that in 

pyramidal QDs. The later can be explained by the images presented in Fig. 2.5 where the electron’s 

wave functions in cuboid (panel (a)), pyramidal (panel (b)), and conical (panel (c)) QDs of the 

same volumes are provided. The QD dimensions are as follows: the height for all QDs is directed 

along the OZ and equal to 3 nm ,   nm1 x yL L  for the cuboid QD and   m1 3 n.7x yL L  for 

pyramidal QD; the radius of the conical QD is  1 nmR . Surfaces containing 75 %  of electron 

wave function are depicted for all shapes. It is clearly seen that the wave functions reflect the form 

of the QDs. In conical and pyramidal QDs wave functions are concentrated near their base, while 

in cuboid QD – in the central region. The area of the base in conical QDs is larger than in pyramidal 

QD, and larger than the cross-section area of cuboid QD of the same volume. Therefore, electron 

confinement for ground level wave function is weaker in conical QDs and electron energy is 

smaller in all dimension range despite the fact that confinement in the Z-direction is stronger in 

conical QDs. The intersection in energy curves for cuboid and pyramidal QDs is explained by the 

interplay of two factors: weaker confinement in the XOY-plane in pyramidal QD accompanied by 

stronger confinement in the Z-direction. The first factor plays a decisive role for small QDs with 

volumes lower than 312 nm , so ground level energy is smaller in pyramidal QD. While in the 

case of QDs with volumes larger than 312 nm , the second factor becomes decisive and electron 

energy in cuboid QDs becomes smaller than in pyramidal QDs. 

 

Fig. 2.5. Electron wave function in QDs. 

(a) in cuboid QD; (b) in pyramidal QD and (c) in conical QD. 
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In the case of the infinite potential barrier electrons/holes do not penetrate in the outer 

dielectric medium. The wave function is concentrated only inside QD. Normalization condition 

are given by the following equation: 

  2 1
QDvolume

r dV 


.      (2.6) 

In our calculations we took into account the finiteness of the barrier between Si QD and dielectric 

media. In this case, the electron and hole wave functions can penetrate throw the potential barrier 

into dielectric media. So Eq. 2.6 takes the form:  

  2 1
QDvolume barriervolume

r dV


 


.     (2.7) 

The part of the integral inside the barrier medium shows us the probability to find a particle beyond 

QD: 

  2

barriervolume
 e x, y,z dV .      (2.8) 

In order to obtain correct numerical results, it is important to consider a wide enough 

dielectric shell allowing free decay of wave function without additional artificial confinement. To 

satisfy this condition in all cases considered below (including the calculation of electron hole 

energy spectra) we determined such thickness of the shell so that its growth no longer affects the 

result of the calculation. So, in our calculations, we added at least a 2 nm shell for QDs. 

The dependences of the electron wave function penetration into the barrier medium for the 

QDs of the different shapes are shown in Fig. 2.6. In panel (a) dependence on the potential barrier 

for cubic QD with dimensions:    3 nmx y zL L L  is shown for the first 5 electron energy levels 

(levels 4 - 5 are degenerated). The penetration into the barrier increases with the electron energy 

and is significant enough ( 8 %  –  10  % ) for all considered levels at  1000 meVbV . In panel (b) 

the dependence of ground level electron wave function penetration on the QD volume is presented 

for cuboid, pyramidal, and conical QDs. The volumes of QDs varied between 3 34 m –n 6 nm3 . 

The penetration is significant for small QD volumes because the energy of the electrons due to the 

stronger confinement is higher and closer to the barrier energy. In the case of spherical QDs 

penetration of ground level wave function is smaller than that in complex-shaped QDs due to 

smaller ground energy of electrons (see Fig. 2.4 (a) and (c)). 
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(a)       (b) 

Fig. 2.6. Electron wave function penetration into the dielectric matrix 

(a) for cubic QD in dependence on potential barrier; 

(b) for cuboid, pyramidal and conical QDs as a function of their volume 

The electron wave function distribution for the three lowest energy levels along axis X in 

the spherical Si QD is shown in Fig. 2.7. For the ground level ne = 1 wave function possesses a 

maximum in the centre of the spherical QD. The wave function of the second electron level ne = 2 

demonstrates two maxima, placed anti-symmetrically inside the QD, while the wave function for 

ne = 3 has three maxima: one in the centre of the QD, and two closer to the barrier. All wave 

functions penetrate into the barrier medium by nm nm~ 0.3  0.5   (the inner Si conduction 

channel is shown by straight dashed lines in Fig. 2.7). The penetration of wave function reinforces 

with rise of ne. 

 

Fig. 2.7. Electron wave function distribution along OX in Si/SiO2 QDs 

We also studied electron energy spectra in spherical Si QDs embedded in SiC dielectric 

shell placed in water or air media (see Fig. 2.8). The effective mass for SiC and barrier energies 

Cuboid QD  
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are taken as follows: 01.47xm m m  , 04.00y zm m m m   , ( , , ) 2400meVe
bV x y z  at the 

Si/SiC interfaces, ( , , ) 1000 meVe
bV x y z  and ( , , ) 4600meVe

bV x y z  at the SiC/H2O and 

SiC/air interfaces, respectively. The dependence of electron energy on shell thickness is depicted 

in Fig. 2.8 for different QD’s radii. The increase of the shell thickness decreases the electron 

energies due to deeper penetration of the wave function in SiC shell and softening of the electron 

spatial confinement. The outer medium influences electron energy for QDs with thin shell only 

( 1 d nm  ) because in this case wave function penetrates into outer medium. Rise of d decreases 

its penetration into air or water and electron energies become independent of outer medium 

material. 

 

 

Fig. 2.8. Electron states in Si/SiC QD embedded in water or air media 

Electron states in Si/SiO2 one-dimensional quantum dot superlattices 

The electron energy spectra in one-dimensional superlattices of Si QDs in SiO2 medium 

were calculated from Eq. 2.2 with applying periodic boundary conditions along superlattice axis 

OZ:    , , , ,e en n
e e ex y z L x y z exp ik L      

 
, where ek  is the hole wave number, 
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 , ,en
e x y z L 


 is the electron wave function outside the chosen translation element,  , ,en

e x y z


 

is the hole wave function inside the translation element and L  is the translation period. 

In Fig. 2.9 the electron dispersions in 1D-QDSL with different QD shapes and translation 

periods are shown. QDs of all shapes possess the same volume. Panel (a) demonstrates ground 

electron energy dispersion for cuboid QDs with  0.3 nmd  and  0.5 nmd . For  0.3 nmd  

electron wave function strongly penetrates in dielectric medium and electrons from different QDs 

are strongly coupled. The latter is confirmed by formation of electron miniband with a width of

~ 40 meV . For larger  0.5 nmd  penetration of wave function beyond QDs becomes weaker 

and miniband width decreases to 4 meV . Further growth of d leads to further decoupling of 

electrons from different QDs and to further decrease of miniband width. Panel (b) and (c) show 

the electron energy dispersions for QDSLs with different shapes: cuboid, pyramidal, cylindrical, 

and spherical. Ground energy dispersions are shown in panel (b), while the dispersions of 3 lowest 

energy levels are presented in panel (c). It is clearly seen from Fig. 2.9(b) that QD shape affects 

the width of miniband: QDSLs with spherical and pyramidal QDs demonstrate narrow miniband 

as compared with QDSL from cuboid or cylindrical QDs. In the case of  0.5 nmd  (panel (c)), 

all 3 lowest minibands are narrow enough both for QDSLs from cuboid and pyramidal QDs. 

Nevertheless, in the case of pyramidal QDs miniband width is smaller than 1 meV , while for 

QDSL with cuboid QDs, it is V~ 4 – 6eV  m me . It is also important to note that QD shape strongly 

influences the distance between energy minibands. In the case of QDSL with pyramidal QDs the 

distance between ground and the second miniband is by a factor of ~ 4 larger than that in QDSL 

with cuboid QDs. 

 

(a)    
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(b)      (c) 

Fig. 2.9. Dispersions of the electron states in Si/SiO2 QDSL 

(a) Ground electron energy dispersion for cuboid QDs 

(b) Ground electron energy dispersion for QDs with different shapes 

(c) 3 lowest electron levels’ energy dispersion for cuboid and pyramidal QDs 

2.2. Hole states in Si-based quantum dot nanostructures 

The valence band in Si is anisotropic: there are three valleys with heavy, light and split-off 

holes. The valence zone energy maxima is in the centre of the of Brillouin zone 0 0k  . All three 

valleys have maxima at the centre of the of Brillouin zone 0 0k   (see Fig. 2.10): one double 

degenerated energy level (from heavy and light holes bands) and one non-degenerated level from 

split-off holes band which possesses smaller energy due to spin-orbital interaction. The 

isoenergetic surfaces have complex form [131]. The schematic view of the holes’ valleys and 

energetic scheme is provided in Fig. 2.10 [130].  
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Fig. 2.10. Holes valleys in Si 

Hole states have been calculated using Schrodinger equation, taking into account self-

action energy: 

           h h h h
n h n n hH r E r  

  
, 

where 

     h h h
k b SAH E V V  


.            (2.9) 

In our calculations, we used two different approaches for the holes: one-band Hamiltonian 

and three-band Bart’s Hamiltonian. One-band Hamiltonian has the following form: 

 

     
     

2 1 1 1ˆ , ,
2 , , , , , ,

h h h
b SA

x y z

H V x y z V
x m x y z x y m x y z y z m x y z z

      
             


, 

                                                                                                                                                 (2.10) 

    
    

21
lim

2 4 | | 

 
      

 
  

 h

h h
SA h

o

Coulomb
r r material

e
V r V r r

r r
,      (2.11) 

where,  h
n  and  h

nE  is the hole wave function and energy for state n, respectively;  zyximi ,,  

is the effective mass of the hole,   is the Planck constant,  , ,e
bV x y z  is the potential barrier for 

hole, 
 e

SAV is the self-action energy, CoulombV  is the Coulomb energy of electron-hole interaction,

 er


 is the radius-vector of the hole, e  is the electron electric charge,     12 1
0 8.85   10  F·m  is 

the vacuum permittivity, Simaterial    is the dielectric permittivity of the silicon QD, 

2SiOmaterial   is the dielectric permittivity of the SiO2 barrier material. One-band Hamiltonian 

does not take into account mixing of heavy, light and split-off holes. Thus we carried out 
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calculations for all these three types of holes separately, substituting effective mass of heavy, light 

or split-off hole in Eq. 2.10. 

Hole states in individual quantum dots (one-band hamiltonians): role of shapes and material 

parameters 

The energies of the heavy and light holes’ levels are presented in Fig. 2.10 (a) and (b), 

respectively. The dependences are shown for the cuboid Si QD with dimensions:

             3  nmx y zL L L . The values of the potential barrier energy varied between 400  m eV and

4000  m eV . Five curves are presented in Fig. 2.10 (a) for heavy holes’ energy levels. The heavy 

holes levels with quantum numbers (i)    1xn  ,    2yn  ,    1zn  ,    2xn  ,    1yn  ,    1zn  ,    1xn  ,    1yn   , 

   2zn   and (ii)    1xn  ,    2yn  ,    2zn  ,    2xn  ,    1yn  ,    2zn  ,    2xn  ,    2yn  ,    1zn   are three-fold 

degenerated, due to the cubic form of the QD and because their effective mass are equal along the 

axes OX, OY, OZ. The three lowest energy branches of the light holes are depicted in Fig 2.10 (b). 

The light holes’ energy levels with the same quantum numbers as indicated for heavy ones are 

three-fold degenerated, too. The energy levels of the light holes are higher than the corresponding 

levels of the heavy holes. The hole’s levels energy and energy distance between them increase 

with the increase of the potential barrier energy both for heavy and light holes because of the 

reinforcement of spatial confinement of the electron for higher values of the barrier energy bV .  

 

 (a)       (b) 

Fig. 2.11. Hole energy levels in cuboid Si QD in dependence on potential barrier 

The (a) heavy holes’ and (b) light holes’ energy levels in dependence on the potential barrier.  

In Fig. 2.12 the penetration dependence on the potential barrier for the hole’s wave function 

is shown. The energy levels are the same as in Fig. 2.11: the first eleven energy levels for heavy 

holes and the first seven levels for the light ones. The dashed line corresponds to the value of the 



59 
 

hole’s potential barrier on the Si and SiO2 interface. The growth of the potential barrier leads to 

the diminution down to the 0 2%  wave function penetration for the heavy hole 

(see Fig. 2.12 (a)). The penetration of the light holes (see Fig. 2.12 (b)) is decreasing, too, but is 

still significant for ground level 4% and up to ~ 20%  for higher energy levels. The smaller 

effective mass of the light hole leads to its higher values of the energy levels and percentage of 

wave function penetration into barrier material.  

     

 (a)       (b) 

Fig. 2.12. The penetration of the hole’s wave function as a dependence on the potential 

barrier. 

(a) penetration of heavy holes wave function; (b) penetration of light holes wave function 

The ground hole energy levels for the QDs with different shapes: cuboid, conical, and pyramidal 

are depicted in Fig. 2.13. Notations ‘hh’, ‘sh’, and ‘lh’ correspond to heavy, split-off, and light 

holes. We fixed the height and changed the cross-section square in the way to obtain an equal QD 

volume. The heavy, split-off, and light hole ground levels are distributed in the same way for all 

QD’s shapes: the heavy holes have the lowest energy, but light holes have the highest energy. All 

types of holes possess the same behaviour in dependence on QD volume. The energy of the ground 

levels in conical QDs is higher than in pyramidal QDs for all calculated QDs’ volumes. In cuboid 

QD the energy of the hole is higher for the small QDs’ volume (up to 3~ 10 nm  ) and lower hole 

energy for larger QDs. 
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Fig. 2.13. Hole’s ground energy states in Si QDs with different shapes: pyramidal, cuboid, 

and conical, in dependence on the QD’s volume. 

Penetration of the ground wave function in the barrier medium for heavy and light holes is 

presented in Fig. 2.14. Since light holes possess higher energy their penetration is stronger for all 

considered QD’s shapes. The crossing of penetration curves for different shapes reflects the 

crossing of the corresponding energy curves (see Figure 2.13). 

 

(a)       (b) 

Fig. 2.14. Penetration of the hole wave function in Si QD of the different shapes in 

dependence on QDs’ volume: 

(a) of the heavy holes and (b) of the light holes. 

In the second approach hole’s energy spectra calculations were done on the base non-

symmetrized three-band Bart’s Hamiltonian. This Hamiltonian describes more accurately the 

valence band of the Si and allows us to take into account hole mixing [34], [132]. The Hamiltonian 

takes the following form, while the resultant hole wave function represents the superposition of 

three wave function, corresponding to the number of the holes’ types: 

Cuboid QD  

Cuboid QD  Cuboid QD  
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 1 2 3
ˆ , , ,h h h h h h hn n n n n n n
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 , , SAy z V ,  (2.12) 

where  ˆ ˆ ˆ , , ,   i i i x y zk k k , ˆ  k i  – impulse operator, 1 24   l , 1 22   h , 

 3 2 3 12 6 1 3        ,  3 2 12 1 3        – parameters, which are expressed with 

Luttinger parameters 1 2 3, ,   . Energy barrier was 5919.6 meV for holes. 

Hole states in individual quantum dots (3-band Hamiltonian): role of shapes and material 

parameters 

In Fig. 2.15 we compare hole energies calculated using 1-band Hamiltonian for heavy and 

light holes with those calculated within 3-band Hamiltonian. The first 3 lowest energy curves are 

depicted for all types of considered holes: heavy, light, and 3-band. The black lines correspond to 

the 3-band holes, while blue lines are for the holes calculated in the one-band approach: dash-

dotted lines are heavy holes energy levels and continuous lines for the light holes spectrum. The 

ground level of the 1-band Hamiltonian approach, i.e. ground level of heavy holes possesses 

smaller energy than the ground level of 3-band holes. Higher energy levels of 3-band holes 

demonstrate similar behaviour with higher levels of heavy or light holes. However, the energy 

difference reaches ~ 20 meV  in dependence on QD’s radius. 

 

Fig. 2.15. Comparison of the 3 lowest hole energy levels calculated within 3-band 

and 1-band Hamiltonian approaches 
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The hole energy spectra in dependence on the QD diameter in spherical and double-

truncated pyramidal QDs is presented in Fig. 2.16 (a) and (b). Energy levels in the spherical QDs 

with quantum numbers (i)    1xn  ,    2yn  ,    1zn   ,    2xn  ,    1yn  ,    1zn  ,    1xn  ,    1yn  ,    2zn   and 

(ii)    1xn  ,    2yn  ,    2zn  ,    2xn  ,    1yn  ,    2zn  ,    2xn  ,    2yn  ,    1zn   are three-fold degenerated, 

due to spherical symmetry of QD. The hole energy decreases with QD’s size due to the weakening 

of spatial confinement for holes. The slope of the curves and energy distance between energy also 

becomes smaller with the increasing of QD size. In the case of double-truncated pyramidal QDs 

(see Figure 2.16 (b)) indicated radii correspond to radii of spherical QDs with the same volume. 

The hole’s energy levels in the TDP QDs are not degenerated because there is no geometric 

symmetry. The energies of the hole’s levels in DTP QDs decrease with QDs’ volume, but they are 

higher than those in spherical QDs due to stronger confinement. 

 

(a)       (b) 

Fig. 2.16. Hole energy spectra in dependence on QD diameter: 

(a)  in spherical QD and (b) in DTPQD 

In Fig. 2.17 the hole wave functions distribution along axis X in the spherical Si QD is 

shown. Fig. 2.17 (a) corresponds to the ground hole energy level, while the panels (b) and (c) 

correspond to the 3rd and 21st  levels, respectively. Different colours (red, blue, green) are used for 

depicting different wave-function components of a 3-band hole: 1 2 3, , .    Straight dashed lines 

mark interfaces between QD and dielectric media. One can see, that the wave function with higher 

a quantum number penetrates stronger in the barrier because the probability of finding the hole 

outside the QD increases together with the energy level.  
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(a)         (b)  

 

(c) 

Fig. 2.17. Distribution of the hole wave function along axe X: 

(a) 1st energy level; (b) 3rd energy level (c) 21th energy level 
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Fig. 2.18. Distribution of the hole wave function along axe X  

To emphasize possibility of wide engineering of hole states in Si-based QDs we also 

studied hole spectra in spherical Si QDs embedded in SiC dielectric shell placed in water or air 

media (see Fig. 2.18). The holes were calculated using 3-band Bart Hamiltonian with parameters: 

 1 4.22Si  ,  2 0.53Si  ,  3 1.38Si  ,  1 1.00SiC  ,  2 0.00SiC  ,  3 0.00SiC   

and  1 0.00medium  ,  2 0.00medium  ,  3 0.00medium  . The barrier energy values 

were between Si and SiC ( , , ) 2400 meVe
bV x y z , and ( , , ) 1000meVe

bV x y z , and 

( , , ) 4600meVe
bV x y z  at the SiC/H2O and SiC/air interfaces, respectively [133]. In Fig. 2.18 

thickness of the SiC shell varies from 0 to 3 nm. The results are qualitatively similar to the electron 

case (see Fig. 2.8): the increase of shell thickness leads to a smaller decrease of the hole energy 

due to a deeper propagation of wave function into the shell (increase of shell thickness shifts higher 

SiC/air or SiC/water barrier further away from QD). For shell thickness  1 nm  hole wave 

function only weakly penetrates into the dielectric medium and hole energies for the case of air 

medium or water medium coincide with each other. 

Hole states in Si/SiO2 one-dimensional quantum dot nanostructures  

The hole dispersions in Si/SiO2 1D-QDSLs were calculated using Hamiltonian from 

Eq. 2.10 and with applying periodic boundary conditions along superlattice axis OZ: 
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   , , , ,h hn n
h h hx y z L x y z exp ik L      

 
, where hk  is the hole wave number,  , ,hn

h x y z L 


 is 

the hole wave function outside the chosen translation element,  , ,hn
h x y z


 is the hole wave 

function inside the translation element and L  is the translation period. 

In Fig. 2.19 the hole dispersions of the ground level in the QDSL with different QD shapes 

are shown. The results are presented for heavy holes. All QDs have the same volume. The distance 

between QDs is 0.3d nm . Ground level in QDSL with spherical QDs has the lowest values. The 

hole ground level in QDSL with cylindrical QDs is very close to the spherical. The ground level 

of the cuboid and pyramidal QD are higher with approximately ~ 50meV . Dependencies 

corresponding to the QDSL with cylindrical and pyramidal QDs have a slight slope, while ones 

corresponding to the QDSL with cuboid QD and spherical QD are almost flat. 

 

Fig. 2.19. Dispersions of the hole states in Si/SiO2 QDSL 

2.3. Exciton states in Si-based quantum dot nanostructures 

Exciton Hamiltonian can be represented in the following form: 

( , ) ( , ) ( , )n n n
exc e h exc e h exc exc e hH r r r r E r r  

     
,                      (2.13) 

where: 

       ,
e h

SA SA
exc e h e h Coulomb e hH r r H r H r V r r   

     
,  (2.14) 

where ( , )n
exc e hr r

 
 are exciton wave functions,  e eH r


 and  h hH r


 are electron and hole 

Hamiltonians respectively, (see Eq. 2.2 and 2.10), CoulombV  is the Coulomb interaction potential.  
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We are looking for the exciton wave function in the form of an expansion in series by 

products of size-quantized electron and hole functions found from Eqs. 2.2 and 2.10 (number of 

functions in the basis is max
en , max

hn ): 

     
max max

,
1 1

,
e hn n

n n i i
exc e h i j e e h h

i j

r r C r r
 

      
   (2.15) 

where  
i

e er  is the wave function of i-th electron level found from Eq. 2.2,  
i

h hr  is the wave 

function of j-th hole level found from Eq. 2.10, max
en and max

hn  is the number of electron and hole 

wave functions in the basis, respectively. 

Multiplying Eq. 2.13 to wave-functions from Eq. 2.15 one can obtain a system of 

homogeneous linear equations for coefficients ,
n
i jC : 

         

          



max max

1 1

1 1

1 1

max max

ma max max max

1 1 1 1

1 1

1 1

' '
,

,

'
, ,

, , ,
e h

e h

e h e h

n n
i jn n n

exc e h exc e h exc e h i j e e h h
i j

n n
n i j

e e h h Coulomb e h i j e e h h
i j

n n n n
i j i jn n i j

i j i j e i j h i j
i j i j

r r H r r r r C r r

H r H r V r r C r r

C C E E

    

     

      







       

     

          

x

1 1 .i j i j
e e h h Coulomb e h e e h h e hr r V r r r r dr dr     




       

  (2.16) 

Let’s denote integral as: 

         1 1 1 1,
,
i j i j ji
i j e e h h Coulomb e h e e h h e hA r r V r r r r drdr     

       
.  (2.17) 

By substituting Eq. (2.17) into Eq. (2.16), one can re-write a system of linear equation in the 

following form: 

    
max max max max max max max max

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

,' ' '
, , , , ,

e h e h e h e hn n n n n n n n
i j i j i j i jn n i j n n n n

i j i j e i j h i j i j i j i j i j n exn
i j i j i j i j

C C E E A C C E           .   (2.18) 

Let’s expand sums, taking into account Kronecker delta symbols: 

    
max max max max max max max max

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

,' '
, , , , ,

e h e h e h e hn n n n n n n n
i j i j i j i jn n i j n n n

i j i j e i j h i j i j i j i j i j exn
i j i j i j i j

C C E E A C C E          .  (2.19) 

If we switch to the excitonic state index n  max max
max max1,2,..., , e hn N N n n  , which combines pair 

of i and j indices, we obtain: 

    
max max max max

1 1 1 1

1 1

1 11 1 1 1

N N N N
n n n ni j n

n n e n h n n exn n n n
n n n n

C C E E A E C C
   

         ,                                       (2.20) 
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where each n  corresponds to the pair  ,i j , and 1n  corresponds to the pair  1 1,i j , so 

1 1 1,
,

n i j
n i jA A

 
, 1 1 1n i j

n i j    . 

Let’s bring Eq. 2.20 into the following form: 

. (2.21) 

The Eq. 2.21 implies that for any fixed value of max1,...,n N  the following equation must hold:  

 
max

1 1 1

1

1 1

N
n n ni j n

e n h n n n exn n
n

E E A C E C


     .  (2.22) 

Exactly, we obtained standard problem of linear algebra: Mx Ex
 

, where E  represents the 

exciton energy, and x


 is a vector of unknown coefficients for the expansion of 

 
max1 2: , , ...,n NC C C C . Matrix elements will take the form: 

1 1 1

1,
n n ni j

n n e n h n nM E E A      . 

The indices i  and j  can be uniquely determined based on index n , while 1n
nA  is the integral of 

Coulomb energy and wave functions:  

         1 1 1 1 1,
,      

       n i j i j i j
n i j e e h h Coulomb e h e e h h e hA A r r V r r r r dr dr . (2.23) 

So, first we calculate: 

       1 1i i i
i h e e Coulomb e h e e eR r r V r r r dr   

     
. 

Thereafter matrix elements 1n
nA were calculated according:  

     1 1 1 1,
,
i j j i j
i j h h i h h h hA r R r r dr  

   
. 

Exciton energy can be calculated on the base of the ground size-quantized states without mixing 

of higher energy levels. In this case problem reduces to the integration: 

 * * , , , , ,ml m m l l
bind el el h h coul el el el h h h el el el h h h

V V

E E x y z x y z dx dy dz dx dy dz      ,   (2.24) 

where m l
b in dE  ─ exciton binding energy in silicon QD, c o u lE  ─ electrostatic Coulomb interaction 

energy, , ,el el elx y z  and , ,h h hx y z  are electron’s and hole’s coordinates, respectively. We have 

integrated Eq. 2.24 on all computational space.  

In order to obtain Coulomb interaction, we solved numerically Maxwell equation: 

 grad 4div     ,   (2.24b) 

 
max max max max

1 1 1 1

1 1

1 11 1 1 1

N N N N
n n n ni j n

n n e n h n n n exn n n
n n n n

C C E E A C E C
   

        
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where   is the dielectric permittivity,   is the field potential,   is the electric charge density. In 

the case of the QD embedded into dielectric matrix permittivity is not constant, so the Coulomb 

interaction was calculated taking into account the difference of the dielectric permittivity in 

different materials. 

Total exciton energy has the following form: 

n m l ml
exc h el bind gapE E E E E    .   (2.25) 

In order to demonstrate how different dielectric permittivities influence electrostatic 

potential in Fig. 2.20 and Fig. 2.21 we show the electrostatic potential distribution in the spherical 

Si QD along the OX axis. In Fig. 2.20, the distribution for charge placed in the centre, near the 

centre, and places at the distance  0.75nmd  from the QD surface are depicted in panel (a), panel 

(b), and panel (c), respectively. Solid lines represent Coulomb potential calculated using different 

permittivities, while dotted and dashed lines represent Coulomb potential calculated with Si and 

SiO2 dielectric permittivities, respectively. In panels (a) and (b) solid lines tend to the dotted lines 

inside the QDs and to the dashed lines in the dielectric medium. However, in the case of the charge 

placed outside the QD (see panel (c)), dependency is very close to the SiO2 potential in all 

coordinates range.  

In Fig. 2.21 the dependence of the Coulomb potential on QD’s sizes and permittivities is 

illustrated. The charge was placed in the centre of the QD for all dependencies presented in 

Fig. 2.21. Panel (a) demonstrates distribution of the potential for different dielectric permittivity 

inside the QD. Calculations were carried out for  12.0medium , and two values of the 8.5QDot   

(dotted line) and 12.0QDot   (dashed line). Higher permittivity of the QD leads to the higher values 

of the potential. Panel (b) demonstrates distribution of the potential for different QD dimensions: 

thick solid line corresponds to the QD with diameter  1 nmD , while thin solid line is for 

 1.5 nmD . The potential is lower inside the QD with the smaller dimensions. In the dielectric 

medium potential values for both dimensions are very close. 
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(a)       (b) 

 

(c) 

Fig. 2.20. Distribution of the Coulomb potential in Si/SiO2 QDSL for different 

charge location 

(a) charged is placed in the centre of the QD; (b) charged is placed near the centre of the QD 

(a) charged is placed outside of the QD 

 

(a)       (b) 

Fig. 2.21. Distribution of the Coulomb potential in Si/SiO2 QDSL 

(a) for different QD dielectrical permittivity; (b) for different QD dielectrical radius 
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(a)   (b) 

Fig. 2.22. Exciton energy dependence on the potential barrier in Si QDs. 

(a) binding energy and (b) full exciton energy in dependence on QD volume. 

In Fig. 2.22 the dependences of binding energy (a) and total exciton energy (b) on potential 

barrier height are shown. The Si QD possesses the form of a cuboid with dimensions:

   m          n 3x y zL L L . The values of the potential barrier energy vary between 400  meV  and

3800 meV . Continues lines represent exciton states calculated using heavy holes’ spectrum, and 

dashed lines are calculated using energies of the light ones; en  and hn  are quantum numbers for 

electron and hole, respectively. Holes energies were calculated using Eq. 2.10, while exciton 

binding energy was calculated from Eq. 2.24. The corresponding levels’ quantum numbers are 

indicated in the graph. Exciton levels 3-5 with quantum numbers   1en   and   2 , 3 , 4hn   

(corresponds to    2hxn  ,    1hyn  ,    1hzn  ;    1h xn  ,    2hyn  ,    1hzn  ;    1h xn  ,    1h yn  ,

   2h zn  ) are three fold degenerated, due to the symmetry of hole’s effective mass. Light holes 

demonstrate higher exciton energy than the heavy ones for all levels. Excitons formed by electrons 

and holes with higher energy have smaller binding energy due to larger exciton radius. In spite of 

this fact, exciton energy continuously increases with the potential barrier because increase of 

charge carrier energy is more significant than drop of binding energy. 
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(a)   (b) 

Fig. 2.23. Influence of the QD shape on exciton energy 

(a) binding energy and (b) full exciton energy in dependence on QD volume. 

The influence of QD’s shape on the binding energy of exciton (panel (a)) and on total 

exciton energy (panel (b)) is illustrated in Fig. 2.23 for Si/SiO2 QDs. Energy curves are depicted 

as a function of QD volume. In both panels energies for the pyramidal QDs are represented with 

blue curves, for the conical QDs with red curves, and for the cuboid QDs with green ones. The 

binding energy increases together with QD volume. In the pyramidal QDs, its value is smaller than 

that in conical and cuboid QDs for all considered QD volumes presented in the figure. For the 

cuboid and conical QDs binding energy curves are crossed: , ,
ground ground
bind conicalQD bind cuboidQDE E  for 

volumes  3 20 nmV  and , ,
ground ground
bind conicalQD bind cuboidQDE E  for  3 20 nmV .  

Total exciton energy (see Fig. 2.23 (b)) decreases with increase QD size due to decrease of 

electron and hole energy with the weakening of the spatial confinement. All exciton energy curves 

are crossed: for volumes in the range of 3 34nm 36nm  the conical QDs demonstrate the lowest 

energy values, while for  336 nmV  energy in cuboid QDs becomes smaller than that in conical 

or pyramidal QDs. The behaviour of energy curves is explained by behaviour of both the electron 

and hole energy curves (see Figs. 2.4. and 2.13) as well as by dependence of binding energies on 

volume V (see Fig. 2.23 (a)).  
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Fig. 2.24. Exciton energy with and without mixing of levels in spherical Si QDs 

In Fig. 2.24 dependence of exciton energy on QD’s size is presented. Continuous lines – 

exciton energy calculated taking into account electron and hole higher energy levels. Dashed line 

– exciton energy for heavy holes without “mixing” of higher states. The calculations for exciton 

energy were carried out taking into account the non-symmetrized three-band Bart’s Hamiltonian 

for holes (Eq. 2.12) and mixing of higher levels for electrons and holes (Eq. 2.22). The continuous 

lines represent exciton energy levels calculated taking into account mixing levels. The dashed line 

indicates the energy of the first exciton level, calculated without taking into account mixing. 

Exciton ground states energy calculated without mixing is lower than energy calculated taking into 

account high energy levels. The difference between ground levels calculated within different 

approaches increases simultaneously with the dimensions of QD because the energy distance 

between electron and hole levels becomes smaller and the influence on ground exciton levels 

increases. Total exciton energy is lower for larger QDs because charge carrier energies are lower 

and electron-hole interaction in the exciton is less too, due to a larger exciton radius. 

In Fig. 2.25 the binding energy (panel (a)) and the exciton states (panel (b)) in the spherical 

QD in dependence on QD diameter are depicted. The dependencies are shown for the 1-8 lowest 

exciton energies. Levels are degenerated due to the symmetry of the spherical shape. The binding 

energy decreases by module because effective exciton radius becomes more and Coulomb 

interaction between electron and hole diminishes. Exciton energy levels behaviour is determined 

by the behaviour of the charge carriers’ states, which energy decreases with the increase of the 

QDs volume. 
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(a)       (b) 

Fig. 2.25. Exciton states in spherical Si QDs 

(a) binding energy and (b) full exciton energy in dependence on QD diameter. 

In Fig. 2.26 binding energy (panel (a)) and the exciton states (panel (b)) in the double 

truncated pyramidal QD in dependence on QD diameter are depicted. The indicated diameter 

corresponds to the diameter with spherical QD with the same volume. The dependencies are shown 

for the 1-4 lowest exciton energies. The binding energy increases together with the diameter of the 

QD, while the exciton energy decreases. The behaviour of the exciton energy dependency is 

determined by the behaviour of the charge carriers’ states, just like in the case of the spherical 

QDs. The binding energy in DTCPQD is less than in spherical QD by module. Exciton energy in 

DTCPQD is higher because the electron and hole space confinement is stronger due to the shape 

of QD. 

 

(a)       (b) 

Fig. 2.26. Exciton states in doubled truncated pyramidal Si QDs 

(a) binding energy and (b) full exciton energy in dependence on QD volume. 
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Fig. 2.27. Comparison of the theoretical calculations and the experimental 

values of the exciton energies in Si QDs. 

In Fig. 2.27 the comparison of experimental and theoretical results for exciton energy is 

depicted. Solid lines represent theoretical calculations made in this Thesis. The green line 

corresponds to the spherical QDs in the approach of 1-band Hamiltonian for holes (Eq. 2.10) and 

without mixing levels for exciton (Eq. 2.24). The black line is for spherical QD too, but the hole’s 

spectra are calculated using a 3-band Hamiltonian for holes (Eq. 2.12) and taking into account 

mixing (Eq. 2.22) of energy levels for exciton. The exciton energy of DTPQD is shown with a red 

line. Dependence was calculated using taking into account the 3-band Hamiltonian and mixing 

high energy levels of charge carriers. Dashed lines represent theoretical calculations from other 

works: the yellow line represents theoretical calculations of spherical QD exciton energy from 

work Ref. [134], and the blue line represents theoretical calculations effectuated by Ledoux et al. 

in Ref. [76], (same as in inset). Black dots, magenta dots and circles, and cyan dots represent 

experimental results obtained for exciton energy in works [40], [39], [135], [14], respectively. In 

the presented experiments Si nanocrystals were embedded into the dielectric matrix SiO2, in the 

work of Watanabe Ref. [135] the Er+ ions were also present in the dielectric matrix. Inset is taken 

from Ref. [76]. It shows theoretical and experimental data of exciton energy in dependence on QD 

size.  
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It is clearly seen that all theoretical curves for spherical QDs have higher energy than 

experiment data for QD’s diameter  3nm , but are in good accordance with measured PL for 

larger QDs. The best agreement with the experimental data demonstrates theoretical calculations 

carried out for spherical QD within a 3-band Hamiltonian approach taking into account the mixing 

of size-quantized electron and hole energy levels. The larger difference between theoretical and 

experimental results for small QDs can be explained by the following reasons: (experimental 

difficulties in obtaining QDs of the same shape and size as well as insufficient accuracy of QD’s 

size/form determination and size/form dispersion in an experiment, which strongly affects spectra 

of QDs with    3 nmd  [13]; and (ii) limited applicability of the continual approach for QDs with 

   3 nmd  (the validity of the continual approach is quite discussible in this case).  

 

(a)              (b) 

Fig. 2.28. Exciton energy in Si/SiC/medium QDs in dependence of SiC shell thickness 

(a) binding energy and (b) full exciton energy in dependence on shell thickness. 

In Fig. 2.28 the dependencies of binding energy and total exciton energy in Si/SiC/H2O 

QDs on SiC shell thickness for different QD radii are presented. The binding energy is smaller by 

the module for QD with a thicker shell because the spatial confinement of the charge carriers is 

less, while penetration of charge carrier wave functions into barrier medium is stronger (see 

Fig. 2.27) and, as follows, increases of the effective exciton radius. However, at the thicknesses 

 2nm  binding energy value saturates because the spatial confinement of the charge carriers does 

not increase anymore, and the effective exciton radius does not increase, as well. The inverse 

relation between QD size and exciton energy is valid as in the case of QD Si/SiO2. Shell 

dependencies show the decay of the exciton energy for shell thicknesses in the range 
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0nm 1nm  . This decay is more prominent for smaller QD radii. The continuous increase of the 

shell leads to the slight growth of the exciton energy, due to the contribution of the binding energy. 

Fig. 2.29 shows the penetration of the electron wave function in Si/SiC/H2O QD as a 

function of the SiC shell thickness. Penetration saturates with the growth of the shell thickness and 

has lower values for the QD with a larger size.  

 

Fig. 2.29. Electron ground level wave function penetration in Si/SiC/H2O 

QD in dependence on shell thickness 

Photoluminescence in Si/SiO2 quantum dot nanostructures 

Photoluminescence curves of the QDs ensemble which have the same dimension and shape 

should have the form of sharp peaks. But conform experiments presented in Ref. [39] 

photoluminescence spectra of а spherical QD Si/SiO2 have the form of Gaussian curves, but not 

of sharp peaks (See Fig.2.30(b)). In Fig, 2.30 we can see (a) a TEM cross-sectional image of an 

nc-Si/SiO2 structure with 3.5 nm Si nanocrystals (b) PL spectra of not-doped nc-Si/SiO2 structures 

[39]; (c) Photoluminescence spectra of QD ensembles before (as-deposited) and after thermal 

annealing at temperatures indicated above the respective curves [13]  

It is clearly seen from Fig. 2.30 (a) reproduced from Ref. [39] that QDs have different sizes 

and irregular forms and also there are dots without clear boundaries (See Fig.2.30(a)). In Ref. [13] 

authors affirm that, however, the formation of larger Si-NCs is preferential at relatively low 

annealing temperatures, while at higher annealing temperatures smaller Si-NCs can be formed. 

Authors argue that the low-energy shift of PL can be explained by two main effects: exciton 

migration through a percolative network and Ostwald phenomena when larger nanocrystals grow 

at the cost of the small one increasing the standard deviation of size distribution.  



77 
 

  

(a)     (b) 

 

(c) 

Fig. 2.30. Photoluminescence of Si-nc embedded into dielectric SiO2 matrix.  

(a) TEM cross-sectional image of an nc-Si/SiO2 structure with 3.5 nm Si nanocrystals; 

(b) Typical PL spectra of undoped nc-Si/SiO2 structures formed from a-Si/SiO2 superlattices 

with different thicknesses of SiO layer (labeled at corresponding curves). 

(c) Normalized PL spectra of silicon-rich silicon oxide films before (as-deposited) and after 

thermal annealing at temperatures indicated above the respective curves 

Figure is adopted from Refs. [13] and [39]. 

In our theoretical investigation, we assume two main possible reasons for 

photoluminescence band broadening: size dispersion and QDs merge. 

For our calculations, we have used Gauss distribution by radius in the case of size 

distribution and Gauss distribution by the distance between QDs centres for the QDs merge case. 

In order to take into account the merge of QDs we analysed the following system: we joined centres 

of 2 spherical QDs with virtual axis and moved them together, i.e. the distance between centres of 

QDs changed from 02R  to zero: 

   N K NW K  , 
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Theoretical modelling of photoluminescence lines has been done conform the following equation: 
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where, 0K – initial radius of QD or maximal distance between the centres of QD, m ax  – exciton 

energy of QD with 0K , a  – parameter, describing dispersion, and is calculated conform the 

following expression: 
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In Fig. 2.31 the comparison of theoretical and experimental curves of photoluminescence 

intense distribution in dependence on PL energies for different QD sizes is shown. Red continuous 

lines represent experimental photoluminescence curves, black dashed lines are dependencies 

obtained via theoretical modelling of QD’s size dispersion, while yellow dash-n-dot lines 

demonstrate the results of theoretical modelling of QD’s merging. In Fig. 2.31 (a) the 

photoluminescence for QD with diameter 3 nm  is shown with dispersion value  2 0.0324x  . 

One can see that the theoretical curve for size distribution almost coincides with experimental data 

(size dispersion is equal to 18 %  from the QD radius). For the QD with a diameter of 4 nm  (see 

Fig. 2.31 (b)), the dispersion was taken the same as for QD with  m3 nD ,  2 0.0324x . But 

in this case, there is a difference between the size dispersion curve and experimental data at the 

low-energy region. For QD with diameter 5 nm  dispersion was increased to  2 0.0484x  . 
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Even for greater dispersion value, the theoretical curve coincides with the experimental one only 

in high-energy region. This occurs because exciton energy increases more slowly with increasing 

QDs size, the size distribution curve is asymmetric, and it’s narrow at the low-energy region, even 

for size dispersion up to 80%a   from the QD diameter. 

 

(a)     (b) 

 

(c) 

Fig. 2.31. Theoretical PL intensity distribution in Si/SiO2 in dependence on PL energy 

for QDs (a) with diameter 3 nm; (b) with diameter 4 nm and (c) with diameter 5 nm 

To explain photoluminescence band broadening we have examined the merge of the QDs. 

Due to the lower exciton energy of the merged QDs, we have obtained good accordance of our 

theoretical calculations with the experiment, as is seen in Fig. 2.31 (c). Therefore, size distribution 

allows us to explain the broadening of the photoluminescence band in the range of high energies, 

at the same time merge of the QDs can be a reason for the broadening in low-energy region. In the 

case of QD diameter  3nmD  the percentage of merged QD is nearly zero and the 

photoluminescence curved is determined only by the effect of QD size dispersion. In evidence of 

our theory about the QDs merging on photoluminescence and exciton energy, we have compared 

theoretically obtained exciton energy with an experiment from Ref. [13].  
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In Fig. 2.32 the electron and hole energies for ground levels for coupled spherical QDs as 

a function of the distance between QD centres for the initial QD radius  1.0 nmR . Calculations 

have been done in the way that the volume of merged QDs has been equal to the total volume of 

two QDs. Both dependencies have a minimum in the interval  1 nm 1.5 nmd . At this distance, 

QD has a maximum diameter. The continuous increase of the distance between the centres leads 

to the reinforcement of the special confinement due to the QD shape. At the distance  m   2 nd  

QDs separate one from another, however, the electron and hole energies do not reach their initial 

values. It happens because electron and hole wave functions penetrate into the dielectric medium, 

so the energies are lower with ~ 12%  for electrons, and ~ 3%  for holes. The difference in electron 

energies is more significant because the penetration of the electron wave function is more than that 

of the holes (18% for electrons and 6%  for holes). 

 

 

(a)           (b)  

Fig. 2.32. Electron and hole energies in dependence on the distance between QDs centres 

(a) electron ground energy level; (b) hole ground energy level 

In Fig. 2.33 the exciton energy dependence on the distance between centres of merged QDs 

is shown. The continuous line represents theoretical calculations of exciton energy in coupled QDs 

in dependence on the distance between their centres (the scheme is presented in the inset). Dots 

represent experimental photoluminescence energy for different annealing temperatures. Dots in 

the graphic correspond to the exciton energies of the sample in dependence on annealing 

temperature [13]. The dependence of the exciton energy on the distance between QD centres of 

the coupled QDs is shown for QDs with  2 nmR . The exciton energy decreases up to 10%  with 
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increasing distance. Experimental points shown on the graph are taken from Ref. [13] for different 

annealing temperatures.  

   

Fig. 2.33. Exciton energy in the coupled QD 

 

Fig. 2.34. Exciton energy in the coupled QD 

In Fig. 2.34 the comparison of the theoretical results obtained in Ref. [134] (green line) and 

out results for single spherical QD (orange line), coupled QD (blue line) with the same radius and 

distance d  between coupled centres equal 0.75d D , where D  is diameter of the QD, and 

experimental data from Ref. [13] (red points). It is seen that coupling of the QD causes the exciton 

energy drop, and is closer to the experimental results, especially at radii  2 nmR . However, 

exciton energy for QD with radii  2.5 nmR  is lower than the energy for single QD.  
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Exciton states engineering in Si/SiC/H2O quantum dot nanostructures 

Energy transfer between QD and impurities embedded in dielectric media is an effective 

mechanism to pump photons in Er3+-ions [39] or to obtain a singlet state of O2 from triplet ground 

level [136], [137]. Exciting of O2 from biologically passive ground state to biologically active 

excited state is important for photo-dynamic cancer therapy [136], [137].  In this case, the Auger 

[136] process of energy transfer takes place. The Auger energy transfer is more efficient if the 

exciton transit from a higher energy level to the lower one. In Fig. 2.35 the scheme of excitation 

of the singlet oxygen state is presented. Absorbed by Si QDs radiation excites oxygen molecules 

from the ground triplet state to the first excited singlet state by non-radiative energy transfer 

(  977meV ). 

 

Fig. 2.35. Excitation of oxygen molecule 

In our theoretical study of Si/SiC/medium QDs, we show that it is possible to obtain the 

energy distance between exciton energy levels closer to the oxygen excitation energy by change 

of quantum dot and shell sizes. In Fig. 2.36 the scheme of exciton energy levels for different QD 

radii and shell thickness are shown. Arrows indicate exciton state transition that may cause 

resonant energy transfer to an oxygen molecule (energy difference is close to the oxygen excitation 

energy). For different Si QD radius resonant transition takes place between different exciton 

energy levels. Modifying of the shell thickness may adjust the energy distance to be closer to the 

oxygen excitation energy. In the case of the transition energy greater/less than the excitation energy 

process may go with phonon emission/absorption. The obtained results may be useful for 

photodynamic cancer therapy [138] and other application of photosensitizing agents. 
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(a)        (b) 

      

(c)       (d) 

Fig. 2.36. Exciton states in Si/SiC/H2O QDSL. 

(a) - (d) QD Radius (R) and Shell thickness (D) are as labelled in the panels. 

2.4. Calculation methods 

General information 

Electron effective mass in silicon has three components: two transverse , 0.19t Si em m  and 

one longitudinal , 0.98l Si em m , while in a dielectric matrix effective mass components take the 

same values 
2 2, ,     l t eSiSiO SiSiOm m m  . Components of effective mass are directed along axes OX, OY, 
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and OZ. The longitudinal effective mass component direction is chosen along axis OZ and along 

QD height. For non-spherical QDs axes were directed as follows: OZ – along the height of the QD 

through the centre of the shape base, OX and OY in the base plane. The thickness of dielectric 

matrix should assure a smooth fade of the wave function. We verified empirically that the minimal 

thickness of the dielectric matrix is equal to 2 nm . The total length of the structure is equal to 

2L D l  , where D – diameter or maximal of the QD’s linear dimensions, l  is the thickness of 

the dielectric matrix. We took into account the difference between the material parameters of QD 

and the dielectric matrix. Electron and hole Hamiltonians were solved by the finite difference 

method. Eigenvectors and eigenvalues were found using the Davidson-Liu method for monster 

matrices [29]. We have taken into account different effective masses in QD and dielectric medium. 

 Average parameters 

In real structures, material parameters (effective mass, dielectric permittivity, etc.) do not 

change abruptly on the interface between QD and dielectric matrix, due to the formation of layers 

with mixed properties. Material parameters for any point  , ,r i j k


 from this layer were 

calculated by averaging on volume V. We took the cube with the centre in point  , ,r i j k


 and 

with the edge length a  (see Fig. 2.37). In order to improve the accuracy of the calculation we used 

a smaller calculation step 2h  inside the cube. Points of the cube situated inside or outside QD have 

a value of material parameter equal to the value of this material parameter in Si or SiO2, 

respectively. 

 

Fig. 2.37. Scheme for the method of the average material parameters. 
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The material parameter in  , ,r i j k


 point can be written as follows:  

  1
V V
g r dVg





 


         (2.29) 

where  g r  is the value of the parameter in the point with radius-vector r
 , V  – volume of 

cube, g  – average value of the parameter. 

The advantage of this method: it can be used for any form of QD. The precision of the 

method depends on the step of calculation 2h  inside the cube. This method was used to average 

effective mass and permittivity on interfaces QD/shell, shell/medium. 

Finite difference method 

The Hamiltonians for electrons and holes were resolved by using the finite difference 

method. We approximate derivatives with finite difference implicit method, the presented formula 

for the electron is written as an example:  
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where , ,
1 1 1

x y z
x y z

M M M
m m m

    , ,x y z    are the steps of discretization along axes X, Y, 

and Z, respectively. 

In the case of the Hamiltonians, we obtain the Hermitian matrix. The eigenvalues and 

eigenvectors of this matrix represent the energy levels and wave functions of the charge carriers, 

respectively. The charge carrier’s spectrum in the QDs discrete. Only the eigenvalues smaller than 

the potential barrier possess physic sense. Hence, we don’t need all matrix solutions, but only 

several with values less the potential barrier between materials. The continuous model means that 

we can enhance the accuracy of the results we should use a smaller discretization step, which leads 

to an increase in matrix’s size. The Davidson-Liu’s method described in Ref. [29]. It is an iterative 

method, which allows us to find only a certain number of the lowest charge-carrier energy levels. 

The approximation of the derivatives for Coulomb potential results in a system of linear equations. 

The Maxwell law Eq. 2.24 can be rewritten as: 
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In the finite difference approach Eq. 2.31 takes the form: 
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i j k i j k i j k i j k
y y

        
 

 
    (2.32) 

     
2

, 1, 2 , , , 1,i j k i j k i j k
y

  


   
 


 

       , , 1 , , 1 , , 1 , , 1
2 2

i j k i j k i j k i j k
z z

        
 

 
 

          
  

 2

, , 1 2 , , , , 1
4 , , .

i j k i j k i j k
i j k

z
  

   

This system was resolved numerically by the Jacobi-Seidel iterative method. 

The result of the calculation of the Coulomb potential distribution in Si QD with d = 3 nm 

embedded in SiO2 dielectric medium is presented in Fig. 2.38. The distribution of potential along 

the OX axis is depicted for the electron charge placed at a distance of 0.375 nm from the QD 

centre. Permittivity near the interface Si/SiO2 changed in the way described above in this 

paragraph. For comparison, spherical Coulomb potentials with Si   and 
2SiO   are also 

shown by dotted and dashed lines, respectively. From Fig. 2.38 it is obvious that taking into 

account the difference in permittivities of QD and surrounded media is crucial for an accurate 

calculation of Coulomb potential.   
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.  

Fig. 2.38. Distribution of the Coulomb potential for charge placed near the centre of the 

QD. 

2.5. Conclusions to Chapter 2 

In this Chapter, we discussed electron, hole, and exciton states in the Si/SiO2, Si/SiC/air, 

and Si/SiC/water QDs. Electron and hole spectra were calculated using the effective mass 

approach, taking into account both the anisotropy of effective electron mass in Si and the possible 

mixing of different types of holes: heavy, light, and split-off. The calculation of hole and exciton 

states using both 1-band and 3-band Hamiltonians is performed to elucidate the effect of holes’ 

mixing. The effect of the potential barrier height and QD shapes on the charge carriers’ and exciton 

states is investigated. The following conclusions can be formulated based on the obtained results: 

 An increase in the potential barrier height leads to an enhancement of electron and hole spatial 

confinement and the corresponding increase of their energies and distance between energy 

levels. 

 Both binding energy and total exciton energy decrease with the rise of QD’s volume due to 

the weakening of the spatial confinement of electrons and holes. 

 The shape of the Si QDs strongly influences electron, hole, and exciton states. It has been 

shown that conical QDs possess the lower values of ground exciton energy in comparison 

with cuboid and pyramidal QDs for the volumes  332 nmV , while for  332 nmV cuboid 

QDs demonstrate the lower values of ground exciton energy. 

 The outer media parameters influence the electron and hole ground energy only for Si QDs 

with narrow SiC shells with thickness  1 nm  because maximal penetration of hole and 

electron wave functions into barrier media in considered Si/SiC/air or Si/SiC/water QDs is 

about 1 nm .  
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 The obtained theoretical results were compared with the existing theoretical [76], [134], and 

experimental results [14], [39], [40], [135] of the other groups. Exciton energies calculated in 

this work are closer to the experiment values in comparison with other theoretical results 

obtained within similar approaches, even for the QDs with a radius  2 nm  where the 

applicability of effective mass theory may require additional confirmations. The difference 

between the theoretical and experimental values for the QDs with the  m1.5 nr  is about 

8%  . A better agreement with the experimental results has been obtained within the 3-band 

Hamiltonian approach with taking into possible mixing of electron and hole states. 

 The large broadening of PL bands in Si QDs as well as the dependence of exciton energy on 

annealing temperature reported recently in experimental works [13] can be theoretically 

explained by the dispersion of QD’s shapes and sizes.  
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3. Thermal conductivity in 1D Si-based nanostructures 

In this Chapter we study phonon and thermal properties of Si-based quasi-one-dimensional 

quantum dot superlattices. We consider here both superlattices with constant (1D-C-QDSL) and 

modulated (1D-M-QDSL) cross-sections. The influence of both geometrical and materials 

parameters of QDSLs on phonon spectra, phonon group velocities and thermal conductivity is 

investigated. We also provide comparative analysis of phonon and thermal properties of multi-

shell silicon nanotubes. The presented results are based on the original author’s works [24], [139–

141]. 

The efficient heat management is one of the crucial problems of nowadays/modern 

electronics. Thermal properties of nanodevices and nanostructures are widely investigated both 

experimentally and theoretically [6], [112], [119], [120], [140], [142]. Optimization and precise 

control of thermal properties is the main goal of the phonon engineering [5], [6], [140]. 

Nanomaterials with high thermal conductivity are promising candidates as heat spreaders and 

interconnectors, while nanomaterials with low thermal conductivity are prospective for 

thermoelectric applications since the efficiency of the thermoelectric energy conversion, figure of 

merit ZT, is directly proportional to the electrical conductivity and inversely proportional to the 

total thermal conductivity: 
2

ph el

S TZT 
 




, where S  is the Seebeck coefficient,   is the electrical 

conductivity, T is the absolute temperature, and ph  and el  are the phonon and electron thermal 

conductivities, respectively.  

Acoustic phonons are the main heat carriers in bulk semiconductors at room temperature 

(RT) and above. So tuning their properties one can influence the thermal flux. 

3.1. Phonons and thermal transport in Si-based one-dimensional quantum dot superlattices 

Quasi-one-dimensional quantum dot superlattices can be divided into two types: 

superlattices with constant cross-section and superlattices with periodically modulated cross-

section. Sometimes, in the literature, QDSLs with constant cross-section are referred as segmented 

nanowires [25], [143], while QDSLs with modulated cross-section are referred as cross-section 

modulated nanowires [23], [24], [26]. Nevertheless, in this work we follow initial QDSL notation, 

i.e.: C-QDSL and M-QDSL. The schematic view of investigated nanostructures is presented in 

Fig. 3.1: 1D-QDSL with constant cross-section (Fig. 3.1 a); 1D-QDSL with modulated cross-

sections (Fig. 3.1 b), where QDSL segments are formed from the two different materials; 1D-

QDSL formed from quantum dots with and without coating (Fig. 3.1 c) and QDSL formed from 
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quantum dots with a different thickness coating (Fig. 3.1 d). The X and Y axes of the Cartesian 

coordinate system are located in the cross-sectional plane of the 1D-QDSL and are parallel to its 

sides, while the Z axis is directed along the structure axis. The origin of the coordinates is set at 

the centre of the nanowire cross-section. All structures have square cross-section and periodic 

structure along OZ. We assume that investigated 1D-structures are infinite along the Z axis. The 

sides of 1D-C-QDSL with the constant cross-sections are denoted as dx and dy. The narrow and 

wide segments of 1D-M-QDSL possess dimensions ,1 ,1 ,1x y zd d d   and ,2 ,2 ,2x y zd d d  , 

respectively. In the case of the QDSL with coated QD total cross-section is denoted with 

,1 ,1x t y td d  for narrow segments and ,2 ,2x t y td d  for the wide ones. The core dimensions are 

,1 ,1 ,1x y zd d d   and ,2 ,2 ,2x y zd d d   for small and large QDs, respectively. In the case of the partially 

coated QDSL  and ,1 ,1y y td d . The length period for 1D-QDSL of all types is 

,1 ,2z z zd d d  . The external surfaces of the nanostructures under consideration are assumed to be 

free [5], [25], [117]. The number of monolayers is denoted as N; the index behind it corresponds 

to the notations indicated for the length d. 

  

  (a)          (b) 

,1 ,1x x td d
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 (c)          (d) 

Fig. 3.1. Schematic view of the investigated 1D-QDSL  

(a) 1D quantum dot superlattice with constant cross-section (C-QDSL); 

(b) 1D segmented quantum dot superlattice with a modulated cross-section (M-QDSL); 

(c) 1D partially coated QDSL with the constant core;  

(d) 1D modulated coated QDSL with the constant core 

3.1.1. Face-centred cubic cell model of lattice vibrations 

The phonon energy spectra are calculated using an atomistic Face-Centred Cubic 

Cell (FCC) [144] model of lattice dynamics. The real crystal lattice of Si and Ge consists of two 

face-centred cubic Bravais sublattices, which are shifted along the main diagonal of a unit cell by 

1/4 of its length. The real crystal lattice of Si or Ge is replaced with one face-centred cubic lattice 

with atoms possessing double mass in its nods. The schematic view is presented in Fig. 3.2. The 

atoms of the second sublattice are denoted with blue colour. This approach considers only acoustic 

oscillations, neglecting relative motion of the atoms of the different sublattices. Since the main 

heat carriers in silicon and germanium [145] are acoustic phonons, our simplification is quite 

reasonable and justified. 
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  (a)        (b)  

Fig. 3.2. Crystal lattice of Si and Ge: 

(a) Real; (b) FCC-model. 

Figure is adopted from Ref. [19] 

In order to obtain the acoustic phonon in 1D-QDSL we have derived equation of motions 

for QDSL period and resolved it taking into account periodic boundary conditions along QDSL’s 

axis. All atoms from QDSL period are translation independent; their displacement differs by phase 

and amplitude.  

Using the force matrix, second Newton law for the atom with radius-vector r  is given by:  

     
 

 2

,

, , ,  





   
r

m r U r q r r U r q   where , , ,x y z   .   (3.1) 

In Eq. (3.1)  m r  – is the double mass of the crystal lattice cell node     3

4




r a
m r ,   r  is 

the material density,   is the phonon frequency, ( , ) iU r q  is the component of the displacement 

vector for the atom  im r , ( , )  r r  is the interaction potential between atom with radius-vector 

 r  and atom with radius-vector  r . The summation in Eqs. (3.1) is performed over all the 

nearest and second-nearest atoms for atom with  r . In the case of silicon, the atom at 

r  has 4 

nearest neighbours at   
  I

n nr r h  (n=1,…,4) and 12 second-nearest neighbours at   
  II

n nr r h  

(n=1,..,12). 

Let’s find solution of differential Equations 3.1 in the form Bloch functions for each atom 

 r :      exp   U r u r ti , where   u r  – is amplitude of atom  r  displacement. We 

substitute this solution into system of differential equations Eqs. (3.1) and will obtain system of 

linear homogeneous algebraic equation for amplitudes  u r : 
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   
 

   2

, , ,

, , , , , , , , , , ,  



  

      
i j k

m i j k u i j k i j k i j k u i j k .         (3.2) 

Interaction with nearest neighbours (atoms are placed at the distance 
2

a
) is central-

symmetric, that’s why this interaction between atom with radius-vector  r  and atom with radius-

vector  r  can be described by only one force constant  1 , , , , ,   i j k i j k  and can be written as: 

          

 

1 1 1

2

, , , , ,
, , , , , ,  



   
   




k k
k

k

i j k i j k h h
h i j k i j k

h
, where  

kh  is coordination vector of the 

first sphere. Interaction with second-nearest neighbours (atoms are placed at the distance a ) is 

described by to force constants  2 , , , , ,   i j k i j k  and  3 , , , , ,   i j k i j k  [141]: 

for atoms with coordinates ( a ,0,0): 

    2 , , , , , ,   


kh i j k i j k =

 
 

 

2

3

3

, , , , , 0 0

0 , , , , , 0

0 0 , , , , ,







   
 

   
    

i j k i j k

i j k i j k

i j k i j k

, 

for atoms with coordinates (0, a ,0): 

    2 , , , , , ,   


kh i j k i j k =

 
 

 

3

2

3

, , , , , 0 0

0 , , , , , 0

0 0 , , , , ,







   
 

   
    

i j k i j k

i j k i j k

i j k i j k

,   (3.3) 

for atoms with coordinates (0,0, a ): 

    2 , , , , , ,   


kh i j k i j k =

 
 

 

3

3

2

, , , , , 0 0

0 , , , , , 0

0 0 , , , , ,







   
 

   
    

i j k i j k

i j k i j k

i j k i j k

. 

Three independent force constants 1 , 2  and 3 can be expressed through the elastic moduli  

11c , 12c  and 44c  of a bulk cubic crystal:  
 12 44

1 2





a c c
, 

 11 12 44
2 2


 


a c c c

, 

 44 12
3 8





a c c

, where a is the lattice constant. 

Using the explicit form of the dynamic matrix coefficients and replacing 3 3u u i  one can 

obtain the system of 3 equations of motion for the components of the displacement vector for each 
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atom with coordinates  , ,i j k  in the case of 1D-QDSL with constant and modulated cross-

sections  [141]: 

   
       

       

       

2
1

1 1 1 1

1 1 1 1

2 2 3 3

, , , ,

1, 1, 1, 1, 1, 1, 1, 1,
2

1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1
2

2, , 2, , , , 2 , , 2

m i j k u i j k

i j k i j k i j k i j k

i j k i j k i j k i j k

i j k i j k i j k i j k



   

   

   



           
 


              


        

 

     3 3 1, 2, , 2, , ,i j k i j k u i j k       

           3 1 3 1 2 1, , 2 , , 2 , , 2 , , 2 2, , 2, ,i j k u i j k i j k u i j k i j k u i j k              

           2 1 2 1 2 12, , 2, , , 2, , 2 , , 2 , , 2 ,i j k u i j k i j k u i j k i j k u i j k             

       
       

1 1
1 1

1 1
1 1

1, , 1 1, , 1
1, , 1 1, , 1

2 2
1, , 1 1, , 1

1, , 1 1, , 1
2 2

i j k i j k
u i j k u i j k

i j k i j k
u i j k u i j k

 

 

   
      

   
      

 

       
       

1 1
1 1

1 1
1 1

1, 1, 1, 1,
1, 1, 1, 1,

2 2
1, 1, 1, 1,

1, 1, 1, 1,
2 2

i j k i j k
u i j k u i j k

i j k i j k
u i j k u i j k

 

 

   
      

   
      

   (3.4a) 

       
       

1 1
2 2

1 1
2 2

1, 1, 1, 1,
1, 1, 1, 1,

2 2
1, 1, 1, 1,

1, 1, 1, 1,
2 2

i j k i j k
u i j k u i j k

i j k i j k
u i j k u i j k

 

 

   
      

   
      

 

         1 1 1 1
2

1, 1, 1, 1, 1, 1, 1, 1,
, ,

2
i j k i j k i j k i j k

u i j k
              

  
  

 

       
       

1 1
3 3

1 1
3 3

1, , 1 1, , 1
1, , 1 1, , 1

2 2
1, , 1 1, , 1

1, , 1 1, , 1
2 2

i j k i j k
u i j k u i j k

i j k i j k
u i j k u i j k

 

 

   
      

   
      

 

         
           

  
  

1 1 1 1
3

1, , 1 1, , 1 1, , 1 1, , 1
, , ,

2
i j k i j k i j k i j k

u i j k
   
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   
       

       

         

2
2

1 1
1 1

1 1
1 1

1 1 1 1
1

, , , ,

1, 1, 1, 1,
1, 1, 1, 1,

2 2
1, 1, 1, 1,

1, 1, 1, 1,
2 2

1, 1, 1, 1, 1, 1, 1, 1,
, ,

2



 

 

   



   
       

   
      

           
  
 

m i j k u i j k

i j k i j k
u i j k u i j k

i j k i j k
u i j k u i j k

i j k i j k i j k i j k
u i j k
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3.1.2.  Acoustic phonons in 1D Si-based nanostructures 

We calculated phonon energy spectra in 1D nanostructures by solving the Eqs. (3.4) 

numerically taking into account free-surface boundary conditions in the XY-plane and periodic 

boundary conditions along axis Z,      , ,  i z i zu k N q u k q Exp q di , where N – is the number 
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of monolayers in the translation period, values of the wave vector zq  belong to the interval 0,
zd
 

 
 

 

for 1D-QDSL and 0,
a
 

 
 

 for NW. Diagonalization of the matrix from Eqs (3.4) was performed 

using LAPACK library [146] under GCC 8.4 compiler [147]. 

The influence of the acoustical mismatch on phonon dispersions are shown in Fig. 3.3. In 

order to compare phonon dispersions of different type of 1D structures we consider Si nanowire 

and Si/Ge 1D-C-QDSL of the same cross-sections. In order to obtain the same number of phonon 

branches we treat Si NW as QDSL, which consist of QDs of the same material and dimensions. 

Both structures have the same geometric parameters: cross-section dimensions 

nm nm2.70 2.70  ( 10 ML   10 ML ) and translation period  ML8zd , segments of Si and 

Ge/Si have the same length  ,1 ,2 4 MLz zd d . Similarly to rectangular nanowires [148], phonon 

modes in 1D-C-QDSL can be classified into four types according to the spatial symmetry of the 

displacement vector components: Dilatational, Flexural1, Flexural2 and Shear. For both 

structures we show phonon branches of Dilatational polarization with numbers s = 0 - 10, 30, 50, 

…,490, 500, 520, …, 1120. The total number of modes in Si NW and in Si/Ge 1D-C-QDSL is 

4332, and the number of Dilatational branches is 1120. The slope of dispersions in 1D-C-QDSL 

is less than in the Si NW nearly uniformly in all energy interval. In Fig. 3.3(b) one can see that a 

lot of phonon modes are concentrated at lower energy values (below green dashed line in 

Fig. 3.3(b)). It happens because maximal energy of acoustic phonons in Ge (dashed line in 

Fig. 3.3(b)) is lower than in Si. So, the number of high-energy Si-like modes in QDSL is smaller 

than that in Si NW. Besides, the slope of the phonon modes with energy higher than ~ 16 meV in 

1D-C-QDSL is also smaller than that in NW, especially for energies higher than maximal phonon 

energy in Ge. Therefore, high energy Si-liked modes become “trapped” in the Ge segments of 1D-

C-QDSL due to acoustical mismatch and do not contribute to the thermal transport [23], [24]. Thus 

1D-C-QDSL operates like phonon filter, which decreases number of common phonon modes that 

participate in thermal transport.  
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(a)  (b) 

Fig. 3.3. Dilatational modes of acoustic phonon spectra in 1D-C-QDSL 

(a) Phonon dispersions in homogeneous silicon NW with cross-section dimensions 

2.70 nm 2.70 nm  ( 10 ML   10 ML ).  

The branches with quantum numbers s = 0-10, 30, 50, …, 490, 500, 520, …, 1120 are shown. 

(b) Phonon dispersions in Si/Ge 1D-C-QDSL with cross-section dimensions 

2.70 nm 2.70 nm  ( 10 ML   10 ML )  

The branches with quantum numbers s = 0-10, 30, 50, …, 490, 500, 520, …, 1120 are shown. 

The next type of the investigated 1D-QDSL is M-QDSL formed from Si and Ge QDs with 

different cross-sections, but same length along OZ. In Fig. 3.4 we depicted phonon modes of all 

polarization types. In the case of the M-QDSL we cannot obtain quite the same number the phonon 

modes, so in order to make comparison more fair we took Si homogeneous NW with the same 

cross-section as have Si QDs in M-QDSL and had same translation period as M-QDSL. The 

phonon dispersions with different polarization are shown for Si NW with cross-section 

10 ML   10 ML  and translation period in Fig. 3.4 (a). The dependencies for Si/Ge 1D-M-QDSL 

with following geometric parameters: Si QDs  ,1 ,1  10 MLx yd d  and ,1 ML2zd , Ge QDs 

 ,2 ,2  12  MLx yd d  and ,2 ML2zd  are presented in Fig. 3.4 (b). For the Si NW, we show 

phonon branches with following numbers for Dilatational: s = 1-9, 10, 15, 20 -70, 80, …, 130; 

Shear: s = 1-9, 10, 15, 20, …, 70, 80-110; Flexural1: s = 1-9, 10, 13, 16, …, 48, 58, …, 118 and 
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Flexural2: s = 1-9, 10, 14, 18, …, 48, 58, 61, 64, …, 121 polarizations. The total number of modes 

in Si NW is 2166. For the Si/Ge M-QDSL, we show phonon branches with following numbers for 

Dilatational: s = 1-9, 10, 12, 14, …, 50, 51, 54, …, 105; Shear: s = 1-9, 10, 12, 14, …, 50, 51, 53, 

..., 89; Flexural1: s = 1-9, 10, 13, 16, …, 48, 58, 60, …, 98; and Flexural2: s = 1-9, 10, 14, 18, …, 

48, 58, 61, …, 97. Total number of modes in the presented Si/Ge 1D-M-QDSL is 2670. Number 

of the phonon modes in 1D-M-QDSL is higher because of the higher number of atoms in the 

translation element. Likewise, in the case of 1D-C-QDSL, one can see many nearly horizontal 

dispersion curves for higher energies in comparison with Si NW. However, in the case of the M-

QDSL this effect takes place starting from energies  5 meV . In Ref. [24] it has been 

demonstrated that in the case of the homogeneous undulated (modulated) nanowires the phonon 

modes in the wide segments represent standing waves that do not propagate along the nanowire. 

This fact leads to an increase of the number of dispersionless modes trapped in QDSL segments 

and amplifies the effect of acoustical mismatch. 

  

     

(a)         (b) 

Fig. 3.4. Acoustic phonon spectra in 1D-M-QDSL. 

(a) Si 10 10ML ML  Dilatational: 1-9, 10, 15, 20 -70, 70, 80-130; Shear: 1-9, 10, 15, 20-70, 70, 

80-110; Flexural1: 1-9, 10, 13, 16 -48, 48, 58-118; Flexural2: 1-9, 10,14,18 -48, 58, 61-121; 

(b) SiGe     9 ML 9 ML 2 ML 11 ML 11 ML 2ML : Dilatational: 1-9, 10, 12, 14 -50, 51, 

54-105; Shear: 1-9, 10, 12, 14-50, 51, 53-89; Flexural1: 1-9, 10, 13, 16 -48, 58, 60 -98; 

Flexural2: 1-9, 10, 14, 18-48, 58, 61-97. 
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The effect of phonon deceleration due to the influence of the phonon confinement is known 

for different nanostructures, including 1D structures [117], [118]. The phonon engineering can be 

used to enhance the drop of a phonon group velocity. The acoustical mismatch of materials and 

varying geometric parameters of the 1D-QDSL allows one to decrease velocity more significant. 

To demonstrate the effect of the phonon deceleration we calculated APGV in Si/Ge 1D-C-QDSL 

and 1D-M-QDSL. The average phonon group velocity was calculated by formula: 

   
   z ss

g
v

dq d









    (3.5) 

The result of the calculations is depicted in Fig. 3.5. The comparison of the APGV of the 

phonon energy in Si NW and Si/Ge 1D-C-QDSL are shown in Fig. 3.5 (a). Red line corresponds 

to Si NW, while the green one is for Si/Ge 1D-C-QDSL. Both structures have same cross-section 

19 ML  19 ML . Translation period for 1D-C-QDSL is  ML8zd . The provided curves 

demonstrate the influence of the acoustical mismatch of materials on phonon properties. The 

APGV in Si/Ge 1D-C-QDSL is lower than in Si NW in all energy interval, it is more visible 

starting from energies greater than ~ 5meV , when the velocity drops in~ 1.7  times. For energies 

lower than 15 meV  APGV is oscillating in the range 0 0.5 km s . Such character of the APVG 

dependency demonstrate the exclusion of the high-energy phonon levels from the phonon 

transport. 

The effect of the APGV drop due to acoustical mismatch of the materials can be amplified 

by geometric parameters of the 1D-QDSL. In Fig. 3.5 (b) the comparison of the APVG energy 

dependencies in Si NW (red line) and Si/Ge 1D-M-QDSL (blue line) is shown. The cross-section 

of the Si NW was 9 ML  9 ML . Geometric parameters of the Si/Ge 1D-M-QDSL were as follows: 

cross-section of the Si QD was 9 ML  9 ML , equal to the cross-section of the NW, cross-section 

of the Ge elements was 15 ML 15  ML ; along the OZ the lengths of the QDs were 

 , , 8 MLz Si z Ged d , total length of the translation period was 16 MLd . The bulk sound velocity 

values are not reached even for Si NW, maximum PGVs in Si are longitudinal  8.48 km slv  

and transversal  5.86 km stv  [19]. In the case of the Si/Ge 1D-C-QDSL PGV is lower than its 

maximum values in the bulk Ge,  5.13 km slv  and  3.36 km stv  [19]. The confinement of 

the phonon leads to  the more explici t  drop of the APGV even for  low energy  

range 0 5 meV . Values become close to 0 starting from energies greater than ~ 12 meV . 
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  (a)        (b)  

Fig. 3.5. Average phonon group velocities in  

(a) 1D-C-QDSL; (b) 1D-M-QDSL.  

The maximum APGV of the Si/Ge 1D-M-QDSL is nearly 5.5 times lower than the maximum one 

in the Si NW, and nearly 5.0 times lower then maximum in Si/Ge 1D-C-QDSL. Velocity becomes 

less than km1  s  starting from 3 meV  in Si/Ge 1D-M-QDSL and from energies greater than 

10 meV  in Si/Ge 1D-C-QDSL, so more phonon modes with the higher energies are excluded 

from the phonon transport. All these facts show that phonon confinement enhances the effect of 

the acoustical mismatch and leads to the drastically drop of APGV. 

3.2. Phonon thermal flux and phonon thermal conductivity 

For calculation of the phonon thermal flux in 1D nanostructures, we used the following 

expression, which was derived from the Boltzmann transport equation within the relaxation time 

approximation [30–33] taking into account one-dimensional density of phonon states 

      
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

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Here , tot s  is the total phonon relaxation time, s is the number of a phonon branch, Bk  is the 

Boltzmann constant,   is the Planck constant and Т is the absolute temperature, 𝜔 is phonon 

frequency, 𝜐௭ is the Z-th component of the phonon group velocity.  

According to the Matthiessen’s rule, the total phonon relaxation time is given by:  

   ,

1 1

tot s z mechanism zq q 
 ,                  (3.7) 

where mechanism  is the relaxation time specific for scattering mechanism. 

Lattice thermal conductivity for 1D-C-QDSL were calculated as  

,

,

κ


NW NT
ph

NW NTS
,                (3.8a)  

while for 1D-M-QDSL 

 
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1 2

,1 ,1 1 ,2 ,2 2

κM QDSL
ph

x y x y

l l

d d l d d l
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


.            (3.8b) 

We have taken into account all basic mechanisms of phonon scattering: three-phonon 

Umklapp scattering, boundary and impurity scatterings [31–38]. Umklapp-scattering was 

calculated using following expression [31], [149]: 

   2

,

1
 ( ) exp /

( ) s z
U s z

B q T C T
q




  ;              (3.9a) 

impurity scattering [25], [31] was taken as: 

 4

,

1
( )

( ) s z
imp s z

A q
q




 ;              (3.9b) 

while boundary scattering calculation formula in the case of 1D structures with the constant cross-

section: NW and 1D-C-QDSL took form:  
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while in the case of a 1D-M-QDSL it is 

,1,1 1

,1 ,1

,2,2 1 2

,2 ,2 1

/2/2
2,

, ,1 ,1 /2 /2 0

/2/2
2

,2 ,2 /2 /2 /4

| ( ) |1 1 1 1
( , , ; )

( ) 1 2

1 1
                 ( , , ; )

yx

x y

yx

x y

dd l
z s z

s z
B s z x y d d

dd l l

s z
x y d d l a

qp
w x y z q dxdydz

q p d d

w x y z q dxdydz
d d

 



  

        

 
   
 

  

  








.





      (3.9d) 
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Parameters A, B and C from Eqs (3.9a-3.9b) were fitted from a comparison of the thermal 

conductivity calculated for bulk silicon with experimental data [24], [25], [28], [150]. The 

following values of parameters are used for relaxation rate calculations (see Eqs. (3.9a-3.9b)): 

9 31.32 10 sA   , 191.88 10 s KB   , and    137.39 KC . In Eqs. (3.9c-3.9d)    
,


  s z

z s z
z

d q
q

dq
 

is the phonon group velocity along the nanowire axis, p  is the specularity parameter of the 

boundary scattering, and ( , , ; )


s zw x y z q  is a displacement vector. Specularity parameters p varies 

from 0 (strong pure diffusive scattering) to 1 (no boundary scattering, pure phonon specular). 

Equations (3.9c-3.9d) provide an extension of the standard formula for the rough edge scattering 

[151] to the case of a rectangular NW or 1D-M-QDSL. In Eq. (3.9d) we take into account the fact 

that a part of the phonon wave corresponding to the mode  , zs q , concentrated in the 1D-M-QDSL 

segment 1 with geometry dimensions ,1 ,1 ,1x y zd d d   scatters on the boundaries of this segment, 

while the rest of this wave scatters on the boundaries of the segment 2 with dimensions 

,2 ,2 ,2x y zd d d  . The specularity parameter p  characterizes the phonon-boundary scattering. 

Depending on the boundary roughness, p  can take values between 0p   (pure diffusive 

scattering) and 1p   (pure specular scattering). 

In Fig. 3.6. we show the phonon thermal conductivity as a function of cross-section 

dimensions (a) and of temperature (b) for Si/Ge 1D-C-QDSLs.  

 

  (a)        (b)  

 

Fig. 3.6. Phonon thermal conductivity in segmented Si/Ge 1D-C-QDSLs 

(a) Cross-section dependency; (b) Temperature dependency  
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The cross-section dependencies in Fig.3.6 (a) are shown for specularity parameters values 

0.9,0.7,0.5p   and temperature  300KT . Thermal conductivity is higher for higher values of 

the specularity parameter because boundary scattering becomes weaker. Increase of the cross-

section dimensions firstly leads to growth of the thermal conductivity, but then it turns to saturation 

(approximatively at 21 ML   21  ML ) and slightly goes down at 23 ML 23 ML . It happens due 

to interplay of two opposite mechanisms: increasing of the number of the phonon modes carrying 

heat, tending to increase of the thermal conductivity and increasing of phonon scattering with rise 

of QDSL cross-section, tending to decrease thermal conductivity.  

The Fig. 3.6 (b) shows temperature dependencies for 1D-C-QDSL with different cross-

section dimensions  ML ML ML9 9 4 ,   L1 3ML M3 1 4L M ,   L1 9ML M9 1 4L M , 

  L2 3ML M3 2 4L M  and   L2 9ML M9 2 4L M , while specularity parameter value was fixed

0.7p  . The curves with cross-sections in the range 9 ML – 23 ML  have higher conductivity 

values in all presented temperature range 100K 400K . The difference between thermal 

conductivity values of the Si/Ge 1D-C-QDSL with cross-section ML ML29 29 and with 

ML ML23 23  one are less than 10%  for low temperatures range 100K 150K  and becomes 

even smaller while the temperature grows. Dependencies nearly coincides at the temperatures 

higher than ~ 330K . The process of the phonon’s scattering with the temperature becomes more 

significant than the increase of the phonon modes’ number in the case of the cross-section larger 

than ML ML23 23 . The intensification of the Umklapp scattering and population of the higher 

phonon energy levels, which have near-zero phonon group velocity, due to the increase of the 

temperature contribute to the thermal conductivity drop. However, all presented temperature 

dependencies have maxima in the range 100K 150K . The maximum in temperature 

dependencies appears when the relaxation time of Umklapp and boundary scattering, which does 

not depend on temperature, became approximatively equal u b  . The maximums’ position shift 

takes place because boundary scattering is stronger in smaller 1D-C-QDSL and it doesn’t depend 

on the temperature as Umklapp scattering, so the condition u b   is met at the lower temperature 

values in the case of 1D-QDSL s with larger cross-section. 
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Fig. 3.7. Temperature dependence of the thermal conductivity ratio in Si/Ge 1D-C-QDSL 

In Fig. 3.7 the ratio of thermal conductivities in Si/Ge C-QDSL and Si NW with the same 

cross-sections is shown as a function of the temperature. The curves are shown for three values of 

the specularity parameters: 0.5,0.7, 0.9p  . The dimensions of Si and Ge segments are the same: 

 ML ML ML9 9 4 . The curve for 0.9p   has a prominent maximum at the 190KT  . The 

Decrease of p leads to a shift of maximum to higher temperatures and to enlarge its width. The 

behavior of ratio curves is explained by a complicated interplay of different factors: (i) increase of 

phonon modes population with temperature, tending to enhance the phonon transport; (ii) increase 

of phonon Umklapp scattering, tending to suppress the phonon transport and (iii) different 

manifestation of these effects in the case of bare NW and 1D-C-QDSL. 

In Fig. 3.8 the ratio of the thermal conductivity in Si/Ge 1D-C-QDSL to the homogeneous 

Si NW with the corresponding cross-section is provided. We varied specularity parameter values 

0.9,0.7,0.5p   and fixed temperature    300  KT  for the dependencies in Fig. 3.8 (a), and vice 

versa, fixed the specularity parameter 0.7p   and changed temperatures    100  KT , 200  K , 

300  K , 400  K  in Fig. 3.8 (b). Translation period was 4zN ML  in both cases. The presented 

ratio dependencies on the QDSL cross-section have maximum. The continues increase of the 

cross-section means more atoms, and phonons as well, participating in heat propagation either in 

C-QDSL and in NW. The effect of the modes trapped in the QDSL segments and of additional 

phonon scattering become not so significant and ratio dependency goes throw its maximum in the 

range   17ML 17ML 23ML 23ML  at the temperature    300  KT  (see, Fig. 3.8(a)). The 

maximum drop of thermal flux is up to2.6   2.9  times. The more significant drop corresponds to 
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smaller specularity parameter value. The shift of the maxima toward larger cross section for 

smaller specularity parameter is the result of interplay of the increasing number of the phonon 

modes and boundary scattering. The curves in Fig. 3.8 (b) demonstrate the most significant drop 

of the thermal transport is reached at the higher temperatures. The thermal transport drop at 200  K

is with ~ 25 %  more than at the    100  KT . The difference between values at 200  K , 300  K  , 

400  K  is in the range 1% 4% . With higher temperatures phonons start to populate higher energy 

levels with near-zero values of the phonon velocity that leads to the more essential drop of the 

thermal flux, but subsequent continues population doesn’t influence the flux much. The 

intensification of the Umklapp scattering leads to the shift of the dependencies’ maxima toward 

smaller cross-section with the increase of temperature. 

The thermal flux in Si/Ge 1D-C-QDSL is lower than in the Si NWs due to different process 

that undergoes in 1D-C-QDSL: high energy phonon modes are trapped within Ge segments with 

lower sound velocity, Umklapp scattering and scattering at segments’ interfaces. 

 

  (a)        (b)  

Fig. 3.8. Cross-section influence on thermal conductivity ratio in Si/Ge 1D-C-QDSL 

(а) constant temperature value    300  KT ; (b) constant specularity parameter 0.7p  . 

The Fig. 3.9 shows the influence of the translation period on thermal properties of the 1D-

C-QDSL. In Fig. 3.9 (a) the dependence of thermal conductivity in the Si/Ge 1D-C-QDSL with 

different translation periods on temperature is shown. We fixed the cross-section of the 1D-C-

QDSL at 9ML 9ML  and the specularity parameter at 0.7p  . Translation period zN  values 

were taken as follows: 4ML , 8ML , 12ML , 16 ML .  
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  (a)        (b)  

Fig. 3.9. Influence of 1D-C-QDSL’s period on thermal conductivity  

(a) Temperature dependence of thermal conductivity for Si/Ge 1D-C-QDSL with cross-section 

  L9: ML M9x yN N  ( 2.43nm 2.43nm ) and different translation period:  

green –   16ML 4.32nmzN , red –   12 ML 3.24 nmzN  , cyan –   8ML 2.16 nmzN , 

blue –     4ML 1.08 nmzN ; 

(b) Ratio of thermal conductivities in SN and 1D-C-QDSL as a function of 1D-C-QDSL’s period 

Nz: blue –   L9: ML M9x yN N  ( 2.43nm 2.43nm ), cyan –  13ML 13ML:x yN N  

( 3.51 nm 3.51nm ). 

Thermal conductivity possesses higher values for 1D-C-QDSL with smaller zN  values. 

All dependencies demonstrate a maximum in the range of the temperatures 120K 150K . This 

maximum is explained by the intensification of the Umklapp scattering with the temperature. It 

slightly shifts toward higher temperatures because boundary scattering is stronger in the 1D-QDSL 

with a smaller translation period zN , so the condition u b   is met at higher temperatures. The 

thermal conductivity in 1D-C-QDSL with  ML4zN  is ~ 1.25  times smaller than in 1D-C-

QDSL with  ML8zN  in the large interval of temperature ( 100K 400K ). The continuous 

increase of translation element length zN  reduces thermal conductivity, but the drop is not 

significant ~1.0 1.1  in comparison with 1D-C-QDSL with  ML4zN .  

Fig. 3.9 (b) shows the dependence of the room temperature thermal conductivity ratio on 

the translation period in 1D-C-QDSL. The results are shown for 2 different cross-sections: 

  L9: ML M9x yN N  and  13ML 13ML:x yN N , and specularity parameter 0.7p . The 
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ratio between thermal conductivity in Si NW and Si/Ge 1D-C-QDSL increases together with 

translation period length zN  and is higher for larger cross-sections. However, we expect that 

thermal conductivity ratio as a function of C-QDSL sizes will reach maximal value for certain 

dimensions and then will start to decrease, approaching value of 1 for C-QDSL with micrometre 

dimensions. The latter is explained by weakening of phonon modes trapping with increase of xN  , 

yN  and/or zN . In the range of  ML ML4 16zN  ratio increases: ~ 2.0 2.8  for 1D-C-QDSLs 

with cross-section 9ML 9ML  and ~ 2.2 3.2  1D-C-QDSLs with cross-section 

ML ML13 13  . Thermal conductivity in Si/Ge 1D-C-QDSL with  16MLzN  is ~ 3.0  time 

lower than in Si NW for room temperature which thermal conductivity is ~ 20  time lower than in 

bulk Si. Thermal transport in Si/Ge 1D-C-QDSL is lower in comparison with bulk material due to 

the trapped phonon modes excluded from thermal transport.  

It is already known that the thermal transport in cross-section-modulated nanowires is 

reduced in comparison with the smooth NW with constant cross-section due to stronger phonon 

confinement [24]. To enhance the suppression of thermal flux we investigated 1D-QDSL formed 

from different materials Si and Ge with different cross-sections of QD. In Fig. 3.10 a dependence 

of thermal flux on the temperature in Si/Ge 1D-M-QDSL is shown for temperatures 

100  – 400 K K  . Specularity parameter took values 0.5p   (blue lines), 0.7p  (green lines), and 

0.9p   (red lines). We fixed the cross-section of the Si QDs for each panel of Fig 3.10,  

so the M-QDSL had the following geometric parameters of cross-section  

in panel (a):   ML ML ML MLSi :7 7 Ge :9 9  ( 1.89nm 1.89nm – 2.43nm 2.43nm ), 

 MLi :7 7MLS ML MLGe :15 15  ( 1.89nm 1.89nm – 4.05 nm 4.05nm ), and in  

panel (b):  MLi :9 9MLS ML MLGe :11 11  ( 2.43nm 2.43nm – 2.97 nm 2.97 nm ), 

 MLi :9 9 MLS ML MLGe :15 15  ( 2.43nm 2.43nm  – 4.05 nm 4.05nm ). 

Translation period of the M-QDSL length was   8ML 2.16nmzN  . 

Thermal flux is more for higher values of the specularity parameter for the 1D-M-QDSL 

of the equal dimensions of Ge QDs because of less intensive boundary scattering. Thermal flux 

for specularity parameter 0.9p   decreases with the temperature rise for all geometries presented 

in Fig. 3.10. The dependencies shown for specularity parameter 0.7p  decreases uniformly in all 

temperature interval. However the slope of the M-QDSL with  ,2 ,2 9 MLx yN N  demonstrates 

more rapid decline than with  ,2 ,2 15 MLx yN N . The curves with 0.5p   and closer values for 
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the cross-section of the Si and Ge QDs  ,1 ,1 7 MLx yN N  and  ,2 ,2 9 MLx yN N , or

 ,1 ,1 9 MLx yN N  and  ,2 ,2 11 MLx yN N , are similar to the temperature dependencies for  

C-QDSL, there is a slight maximum near  200KT . The dependencies for 0.5p  , but with Ge 

QDs with cross-section 15 ML 15 ML  do not have maxima, but the slope of the curve become 

smaller for temperatures greater than  200KT .  

 

  (a)        (b)  

 

Fig. 3.10. Thermal flux dependence on temperature in Si/Ge 1D-M-QDSL 

Translation period  ML   8zN  and specularity parameter 0.5p   (blue lines), 0.7p  (green 

lines), and 0.9p   (red lines) 

(a) Si QD:  ,1 ,1 7 MLx yN N . Dashed lines –  Ge QD:  ,2 ,2 15 MLx yN N ,  

Continuous lines –  ,2 ,2 9 MLx yN N ;  

(b) Si QD:  ,1 ,1 9 MLx yN N , Dashed lines –  Ge QD:  ,2 ,2 15 MLx yN N ,  

Continuous lines –  ,2 ,2 11 MLx yN N . 

Number of phonon modes is obviously lager in the case of the 1D-QDSL with larger cross-

section. The contribution of the different segments in the case of the 1D-M-QDSL into boundary 

scattering is inversely to their cross-section due to the factor 
, ,

1 1 
  

 x i y id d
, see Eq. 3.9(d). So, if 
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we fix dimension of the Si QD and will increase the dimension of the Ge one, we can suppose the 

higher values of the thermal flux in the case of the M-QDSL with  ,2 ,2 15 MLx yN N , rather 

than in the case of  ,2 ,2 9 MLx yN N  or  ,2 ,2 11 MLx yN N . This behaviour we see for the 

curves with 0.5p  . Though, in the case of the specularity parameter 0.9p   thermal flux of the 

1D-M-QDSL with   :7 7 :15 1ML ML 5ML MLSi Ge is lower than thermal flux in M-QDSL 

  ML ML ML ML:7 7 :9 9Si Ge , and in the   :9 9 :15 1ML ML 5ML MLSi Ge  is lower 

than in   :9 9 :11 1ML ML 1ML MLSi Ge . 

The dependencies obtained for the specularity parameter 0.7p   demonstrates 

intermediate case: the thermal flux is more intensive for Ge QDs with a cross-section 

 ,2 ,2 15 MLx yN N  than with the smaller ones at temperatures less than 170K . But situation 

changes for the higher temperatures: the M-QDSL with Ge QDs  ,2 ,2 9 MLx yN N , in the case 

of Si QD  ,1 ,1 7 MLx yN N , or with Ge QDs  ,2 ,2 11 MLx yN N , in the case of Si QD 

 ,1 ,1 9 MLx yN N . It demonstrates that behaviour of the phonons is more complex. Despite the 

factor 
, ,

1 1 
  

 x i y id d
 that decreases contribution of the 1D-M-QDSL segment into scattering inverse 

to its cross-section, we cannot predict the value of the integral 

,2,2 1 2

,2 ,2 1

/2/2
2

/2 /2 /4

( , , ; )


  
  

yx

x y

dd l l

s z

d d l a

w x y z q dxdydz . The redistribution and deceleration of the phonon modes 

leads to more complex behaviour of the thermal flux dependencies, while thermal conductivity 

demonstrates increase with the increase of the atoms number in 1D-M-QDSL. 

In Fig. 3.11 thermal flux dependencies are shown for 1D-M-QDSL with different 

geometric parameters. In Fig. 3.11 (a) we fixed dimensions of the Ge QDs at  ,2 ,2 11 MLx yN N  

and value of specularity parameter 0.7p  . Red curves correspond to the Si QDs with 

 ,1 ,1 9 MLx yN N , while the blue to the  ,1 ,1 7 MLx yN N . Solid lines denote 1D-M-QDSL 

with translation period  4 MLzN , dashed lines are for  8 MLzN , and the dot-dashed lines 

to the  12 MLzN . Dependencies which correspond to 1D-M-QDSL with the larger cross-

section have higher values for same translation period length. However, 1D-M-QDSL with larger 

Si QDs  ,1 ,1 9 MLx yN N and translation period  12 MLzN  have lower values of thermal 

flux, than ones with smaller Si QD cross-section and  4 MLzN .  
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In Fig. 3.11 (b) the dependencies are presented for fixed values of Si QDs 

 ,1 ,1 9 MLx yN N  and translation period  4 MLzN . The dimensions of Ge QDs varied: 

 ,2 ,2 11 ML, 13 ML, 15 MLx yN N . Red lines are for 0.9p  , while the blue ones are for 

0.5p   . Solid lines denote 1D-M-QDSL with Ge QDs cross-section  ,2 ,2 15 MLx yN N , 

dashed lines are for  ,2 ,2 13 MLx yN N , and the dot-dashed lines to the ,2 ,2 11x yN N ML  . 

Thermal flux is more intensive for 1D-M-QDSL with 0.9p   for all presented values of Ge QDs 

cross-section. In the case of specularity parameter 0.9p   higher thermal flux values correspond 

to the larger Ge QDs because of the greater number of the phonon modes, while boundary 

scattering has low intensity. For the specularity parameter 0.5p   dependencies with 13 ML  and 

11 ML  intersect at the temperatures ~ 120 K  because boundary scattering and Umklapp 

contribute become more significant in comparison of the phonon number increase. 

 

  (a)        (b)  

Fig. 3.11. Thermal flux in Si/Ge 1D-M-QDSL. 

(a) Ge QD:  ,2 ,2 11 MLx yN N , 0.7p  . Red lines Si QD:  ,1 ,1 9 MLx yN N , Blue lines Si 

QD:  ,1 ,1 7 MLx yN N ; Continuous lines –  4 MLzN ; Dashed lines –   8 MLzN , Dash-

dotted lines –   12 MLzN ;  

(b) Si QD:  ,1 ,1 9 MLx yN N ,  4 MLzN . Red lines Si QD: 0.9p  , Blue lines Si QD: 

0.5p  ; Continuous lines – Ge QD:  ,2 ,2 15 MLx yN N ; Dashed lines –  Ge QD: 

 ,2 ,2 13 MLx yN N , Dash-dotted lines –  Ge QD:  ,2 ,2 11 MLx yN N ;. 
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In Fig. 3.12 ratios of thermal fluxes between 1D-M-QDSL and NW with corresponding 

cross-sections are shown. In Fig. 3.12 (a) the temperature dependencies are shown. We fixed 

values of the specularity parameter at 0.7p , and cross-section of the Ge QDs at 

11 ML 11 ML  . Dependencies are depicted with green lines for M-QDSL with Si QDs’ cross-

section 7 ML 7 ML  , but the green ones for M-QDSL with Si QDs’ cross-section 

9 ML 9 ML  . Continuous lines correspond to the translation period value  4 MLzN , dashed 

lines to the  8 MLzN , and dot-dashed lines to the  12 MLzN . Ratio of the thermal fluxes in 

1D-M-QDSL and Si NW grows together with temperature. Thermal flux ratio dependencies have 

no maxima for all presented cross-sections and translation period values, as the ratios in C-QDSL 

do. However curves’ slope becomes less starting from the temperature ~ 200K . The slope 

becomes nearly zero for M-QDSL with  ,1 ,1 9 MLx yN N  and translation period  4 MLzN , 

the M-QDSL with  8 MLzN  and  12 MLzN  dependencies demonstrate saturation, as well. 

The slope in temperature interval 100K 200K  is more pronounced due to population of the high 

energy level in NW and M-QDSL, which have in the modulated nanostructure near 0 phonon 

velocities and their contribution in such structures to the thermal transport is rather small, while 

boundary scattering which is stronger in M-QDSL and does not depend on temperatures.  

 

  (a)        (b)  

Fig. 3.12. Thermal flux ratio in Si/Ge 1D-M-QDSL 

(a) Temperature dependency for different translation period zN ;  

(b) Thermal flux ratio dependency on translation period zN  
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Fig. 3.12 (b) shows the dependencies of the thermal flux on translation period zN  for fixed 

temperature 300T K  and specularity parameter 0.7p . The green and blue lines have same 

meaning as in Fig. 3.12 (a). Here, continuous lines correspond to the Ge segments with 

11 ML 11 ML , and dot-dashed lines to the 15 ML 15 ML . The drop of the thermal flux 

increases with the increase of the translation period. Our results show the drop of RT thermal flux 

up to ~13  times. The drop of the thermal flux in Si/Ge 1D-M-QDSL is stronger than in Si/Ge 

1D-C-QDSL (up to ~ 3.5  times) because geometry that amplifies the effect of the material 

mismatch. 

In Fig. 3.13 we show the ratio of the thermal flux in Si NW #1 and Si/SiO2 coated and 

partially coated 1D-M-QDSL #2 - #7 as a function of temperature. The Table with nanostructures 

notations and dimensions is shown below. The heat flux increases with the temperature rise in 

wide interval of temperatures. Most of presented curves have minima at temperature ~ 125 K , 

excepting the curve #5 where cross-section of the narrow and wide QDs are very close. These 

minima are explained by different temperature-dependencies f thermal flux in NWs and QDSLs. 

Overall, the heat flux in Si/SiO2 1D-M-QDSLs drops by a factor of 3 to 7 depending on their core 

and shell dimensions.  

  

Fig. 3.13. Ratio of thermal fluxes in Si NW and Si/SiO2 1D-M-QDSLs as a function of 

temperature. 

The reason for the thermal flux reduction is the decrease of the average phonon group 

velocity and trapping of phonon modes into the M-QDSL segments. In M-QDSL, partially coated 

with SiO2 (1D-M-QDSLs #5, #6, #7), the heat propagates only through Si core, while in Si/SiO2 
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M-QDSL fully coated (1D-M-QDSLs #2, #3, #4) it propagates also through SiO2 shell. As a result, 

reduction of the heat flux is stronger in the 1D-M-QDSLs #5 - #7 in comparison with that in the 

1D-M-QDSLs #2 - #4. In general, more complicated lattice dynamics models than the FCC model 

are needed for an accurate quantitative description of Si/SiO2 1D-M-QDSLs. Therefore, our results 

presented here provide a qualitative description of their thermal properties. Nevertheless, we have 

checked that the FCC model only by a few (~2 to 10) percent overestimates the heat flux in Si 

NWs and 1D-M-QDSLs in comparison with the five-parameter BvK model due to the difference 

in phonon dispersion curves [24].  

Dimensions of the 1D nanostructures 

Nanostructure 
Dimensions 

(all dimensions are indicated in monolayers 1 ML = 0.27 nm) 

Notation in 

the present 

work 

Si NW 28 ML × 28 ML NW #1 

Si/SiO2  

M-QDSL 

QD1: 

 Si(28 ML × 28 ML × 24 ML)/SiO2(36 ML × 36 ML × 24 ML) 

QD2: 

Si(28 ML × 28 ML × 24 ML)/SiO2(44 ML × 44 ML × 24 ML) 

M-QDSL #2 

Si/SiO2  

M-QDSL 

QD1: 

 Si(60 ML × 60 ML × 24 ML)/SiO2(76 ML × 76 ML × 24 ML)  

QD2:  

Si(60 ML × 60 ML × 24 ML)/SiO2(92 ML × 92 ML × 24 ML) 

M-QDSL #3 

Si/SiO2  

M-QDSL 

QD1: 

Si(60 ML × 60 ML × 24 ML)/SiO2(68 ML × 68 ML × 24 ML)  

QD2: 

Si(60 ML × 60 ML × 24 ML)/SiO2(76 ML × 76 ML × 24 ML) 

M-QDSL #4 

Si/SiO2  

M-QDSL 

QD1: 

Si(28 ML × 28 ML × 24 ML) –  

QD2: 

Si(28 ML × 28 ML × 24 ML)/SiO2(52 ML × 52 ML × 24 ML) 

M-QDSL #5 

Si/SiO2  

M-QDSL 

QD1: 

Si(28 ML × 28 ML × 24 ML) –  

QD2: 

Si(28 ML × 28 ML × 24 ML)/SiO2(36 ML × 36 ML × 24 ML) 

M-QDSL #6 
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Si/SiO2  

M-QDSL 

QD1: 

Si(60 ML × 60 ML × 24 ML) –  

QD2: 

Si(60 ML × 60 ML × 24 ML)/SiO2(76 ML × 76 ML × 24 ML) 

M-QDSL #7 

Phonons and thermal transport in multishell Si/SiO2 nanotubes 

It was already shown in this Chapter and in Ref. [139] that SiO2 shell in Si NW and 1D-

QDSL leads to drop of thermal transport up to 7 times due to acoustical mismatch of materials. 

Here we would like to investigate another 1D structure – the NT made of one or more “shells”, 

each shell is formed from Si and SiO2 layer. 

The schematic view of the Si/SiO2 NT is presented in Fig. 3.14. The X and Y axes of the 

Cartesian coordinate system are located in the cross-sectional plane of the NT and are parallel to 

its sides, while the Z axis is directed along the structure axis. The origin of the coordinates is set 

in the centre of the nanotube cross-section. MNTs have square cross-section. We assume that 

investigated MNT are infinite along the Z axis. Multishell NTs have characteristic parameters, 

such as dimensions of cavity cavity cavityd d , thickness of silicon S id  and silica 
2SiOd  layers, which 

together form a shell, and number of Si/SiO2 shells is L . 

 

Fig. 3.14. Schematic view of the multishell NT. 

Figure is adopted from Ref. [139] 

In Fig. 3.15 the comparison of phonon spectra and DOS in Si NW and two Si NT with 

different number of shells parameters is provided. The phonon spectra were calculated resolving 
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system from Eq. 3.4. In 1D case, the phonon density of states (DOS) per unit length in real space 

can be found from the relation:   1
2 zg d dq 


 . Hence, 

  1 1
2 2

z

z

dq
g

d v


  
  .       (3.10) 

The Si NW has dimensions 11 ML 11ML  ( 2.97 nm 2.97 nm ). The geometric parameters of 

the Si/SiO2 NTs are as follows: the cavity cross-section is 45ML 45ML   

( 12.15 nm 12.15 nm  ), the thickness of the Si layer is 6 ML  (1.62 nm ) and the thickness of 

the SiO2 layer is 4ML (1.08 nm ). Phonon dispersion curves and DOS are represented for a NT 

with a single shell, 1L  , in panel (b) and with two shells, 2L  , in panel (c). For the Si/SiO2 NT 

with 1L  , we present phonon branches with s = 1–5, 30, 55, 480, 500, 550, …, 1000, 1075, …, 

1600, 1661 for Dilatational polarization; s = 1–5, 30, 55, 480, 500, 550, …, 1000, 1075, …, 1600, 

1640 for Shear polarization and s = 1–5, 30, 55, 480, 500, 550, …, 1000, 1075, …, 1600, 1650 for 

Flexural1 and Flexural2 polarizations. For the Si/SiO2 NT with 2L  , the following phonon 

branches are depicted: s = 1–5, 80, 155, 230, 305, 380, 455, 500, 675, 850, …, 2950, 3000, 3100 

…, 3900, 3920 for Dilatational polarization; s = 1–5, 80, 155, 230, 305, 380, 455, 500, 675, 850, 

…, 2950, 3000, 3100 …, 3800, 3880 for Shear polarization and s = 1–5, 80, 155, 230, 305, 380, 

455, 500, 675, 850, …, 2950, 3000, 3100, …, 3900 for Flexural1 and Flexural2 polarizations. 

 

(a)         (b) 
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(c) 

Fig. 3.15. Phonon acoustic mode dispersions and DOS in Si NW and Si/SiO2 NT  

(a) Si NW; (b) Si/SiO2 NT with one shell; (c) Si/SiO2 NT with two shells. 

Figure is adopted from Ref. [139]. 

The number of quantized phonon branches in the NTs, 6600 for NT with single shell and 

15600 for NT with double shell, is substantially larger as compared to NW, 1323. The slope of 

dispersions in NTs is less than in the NW for the lowest phonon branches due to acoustic mismatch 

between silicon and silicon dioxide. A great number of phonon modes in the NTs with energy 

 10 meV  are nearly dispersionless and possess group velocities close to zero. The DOS 

maximum in NTs is shifted toward the lower energy interval than in the NW, where the drop of 

the phonon group velocity is more significant (see Fig. 3.16). The DOS maximum for two shells 

is more prominent, than for a single shell, due to a greater number of phonon modes concentrated 

in SiO2, which has a lower maximal phonon energy than Si. However number of states in the 

energy range 20 meV 37 meV  decreases, that demonstrates the redistribution of phonon states 

in Si layers, too. The effect of the phonon deceleration in a NT is illustrated in Fig.  3.16. 
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 (a)         (b)  

Fig. 3.16. Phonon group velocities in NT with different numbers of shells 

(a) Si/SiO2 NT with cavity dimensions   , , 45 ML 45 MLcavity x cavity yN N ;  

(b) Si/SiO2 NT with cavity dimensions   , , 5 ML 5 MLcavity x cavity yN N . 

Figure is adopted from Ref. [139].  

The phonon group velocities for NTs with the same cavity and Si- and SiO2-layer 

thicknesses, but different numbers of shells are shown in panels (a) and (b). In Fig. 3.16 (a), the 

Si/SiO2 NTs with the following geometric parameters are represented: the cavity cross-section is 

  , , 45 ML 45 MLcavity x cavity yN N ,  , , 6 MLSi x Si yN N ,  
2 2, , 4 MLSiO x SiO yN N ; blue 

line and black line correspond to a single shell ( 1L  ) and two shells ( 2L  ). In Fig. 3.16 (b), 

NTs have the following parameters:   , , 5 ML 5 MLcavity x cavity yN N ,  , , 6MLSi x Si yN N , 

 
2 2, , 4 MLSiO x SiO yN N ; blue, red, green and orange lines correspond to single shell ( 1L  ), 

two ( 2L  ), three ( 3L  ) and four ( 4L  ) shells. 

The phonon group velocity in NTs is smaller than in a NW over a large energy range  

(0 to 30 meV ). In the interval of energies 30 meV to 37 meV , the phonon group velocities vary 

near the same low values for all considered above geometric parameters of NTs. The reduction of 

the phonon group velocities is explained by an acoustic mismatch of materials, a stronger phonon 

confinement, and a redistribution of the phonons’ DOS. The effect of the number of shells is more 

significant in NTs with a larger cavity: the decrease of phonon group velocities in two-shell NTs 

in comparison with single-shell NTs is stronger in NTs with cavity dimensions 45 ML 45 ML  

than in NTs with   , , 5 ML 5 MLcavity x cavity yN N . A further increase of the number of shells 
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slightly reinforces the reduction of the phonon group velocities. This fact can be explained by 

weaker special phonon confinement in NT with more shells.  

For calculation of the phonon thermal flux in multishell NT, we used the Boltzmann transport 

equation in the form presented in Eq. 3.6 [30–33] using Matthiessien rule for total relaxation time 

(Eq. 3.7). We used Eq. 3.8a for calculation of the thermal conductivity, as for 1D-C-QDSL. As in 

the case of the Si/Ge 1D-QDSL, for NT we have taken into account three-phonon Umklapp and 

impurity scatterings [31–38], [149]. Their relaxation times were calculated using Eqs. 3.9 (a-b). 

As the third scattering mechanism for NT we employed two different types: the “effective 

scattering rate” 
2

1

SiO
 due to the diffusion of vibrational excitations in amorphous SiO2 [152]: 

     
2

2 2

,2
, 22

,, . .

31 1 1 x SiOs
Z s

X SiO x SiSiO S z b l

dq
v q

dq a F


   

   ,    (3.11a) 

or the relaxation rate for the boundary scattering 
1

B
: 

 
 

2 2

,

, , , ,,

11 1 1 1 1 1
1 2

Z S z

X x Si y Si x SiO y SiOB S z

v qp N
p d d d dq 

 
     
   

.  (3.11b) 

In Equations (3.11a) and (3.11b) . . 0.235b la   is the SiO2 bond length,   is the mean vibrational 

frequency (the mean vibrational energy  34 meV   is taken from Ref. [152], 0.33F   

according to Ref. [153]).  

A comparison of thermal conductivity in a Si NW and Si/SiO2 NTs as a function of 

temperature is provided in Fig. 3.17. Average phonon group velocities as a function of phonon 

energies in Si/SiO2 MNTs with the cavity cross-section 45 ML 45 ML  and 5 ML 5 ML , and 

different numbers of Si/SiO2 bilayer shells, formed by silicon layer with thickness 6 ML and silica 

layer with thickness 4 ML . Results for Si NW with cross section 11 ML 11 ML  are also shown 

for comparison. Calculation of the thermal conductivity illustrated in Fig. 3.17 (a-b) takes into 

account diffusion transport in SiO2 (see Eq. (3.11a)), while Fig. 3.17 (c-d) includes the boundary 

scattering (see Eq. (3.11b)) with the specular parameter 0.6p  . The values of the thermal 

conductivity in NTs (even for the NTs with a greater number of phonon modes, see Fig 3.17(c)) 

are lower than the thermal conductivity in the NW in the whole temperature range. This decrease 

of the thermal conductivity in the NTs occurs due to the acoustic mismatch of Si and SiO2, a DOS 
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redistribution (Fig. 3.15), which leads to a decrease of the phonon group velocities, and an 

enhancement of the phonon scattering at interfaces.  

The maxima on the thermal flux curves shown in Fig. 3.17 are determined by the interplay 

between the three-phonon Umklapp and the boundary or amorphous scattering. At low 

temperatures, the boundary scattering dominates, and the thermal flux increases with temperature 

due to the population of high-energy phonon modes and approaches the maximum value, when 

U B  . A subsequent rise of temperature leads to an enhancement of the Umklapp scattering and 

a diminution of the thermal flux. The lower values of the thermal conductivity and curves’ slope 

for temperature dependences calculated considering the boundary scattering mechanism 

(Eq. 3.17 b). One can see that considering the boundary scattering mechanism instead of 

amorphous scattering mechanism leads to more significant reduction of thermal conductivity due 

to a big number of interfaces in multishell NTs, which leads to domination of the boundary 

scattering mechanism. The thermal conductivity of the NTs with 45 ML 45 ML is higher than 

with the 5 ML 5 ML  because of a larger number of phonon modes in these structures. Additional 

interfaces between the shells effectively scatter phonons, hence the TC decreases with 

augmentation of the number of shells (see panels (b) and (d)) reaching values as low as 


W0.2  m K  at RT for Si/SiO2 NT with smaller cavity and 4L  . A similar dependence of TC 

on L was demonstrated experimentally for Si/SiO2 rolled-up nanotubes of 1.9 m  to 3.2 m  radii 

and a 24-nm-thick shell [152], see Fig. 3.17(g). 

  

(a)      (b)  
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(c)      (d)  

                                              

(e)      (f)  

 

(g) 

Fig. 3.17. Thermal conductivity in NTs. 
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Umklapp and diffusive scattering in Si/SiO2 NT with cavity dimensions 

(a)   , , 45 ML 45 MLcavity x cavity yN N  and (b)   , , 5 ML 5 MLcavity x cavity yN N  

Umklapp and boundary scattering in Si/SiO2 NT with cavity dimensions 

(c)   , , 45 ML 45 MLcavity x cavity yN N  and (d)   , , 5 ML 5 MLcavity x cavity yN N  

Density of states in Si/SiO2 NT with cavity dimensions 

(e)   , , 45 ML 45 MLcavity x cavity yN N  and (f)   , , 5 ML 5 MLcavity x cavity yN N  

(g) Thermal conductivity in rolled-up structures.  

Figure is adopted from Refs. [139] and [152] 

To elucidate the dependence of TC in MNTs on p, we plot in Fig. 3.18, the TC of a single-

shell Si/SiO2 NT ( 5 ML / 6 ML / 4 ML ) as a function of temperature for different values of p.  

A decrease of the specularity parameter suppresses TC over the entire considered range of 

temperatures. Thus, the boundary scattering plays an important role in limiting thermal transport 

even for  150 KT , where the three-phonon Umklapp scattering becomes relatively strong. This 

results in decreasing TC with T for  150 KT .  

 

Fig. 3.18. Thermal conductivity in NTs 

Figure is adoped from Ref. [139]. 

In Fig. 3.19 (a), we show how different values of p affect the drop of TC in MNTs as 

compared with NWs. The TC curves in Fig. 3.19 (a), were calculated taking into account both the 

phonon-boundary scattering and the diffusion of vibrational excitations in SiO2 layers. 

Coexistence of the phonon-boundary scattering and the “effective scattering” due to the diffusion 

of vibrational excitations in SiO2 layers results in lower values of TC in comparison with the cases 

of their separate action. At the same time, the TC reduction with rising number of shells remains 
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manifested for different values of p (see Fig. 3.19 (a)). It is also worth noticing that for  0.9p 

the ratios between thermal conductivities in MNTs with different numbers of shells 
 
 1

ph

ph

N


 for  

   2L   and    5L   (see Fig. 3.19 (b) are close to experimental values [152] despite the fact that 

experimental multishell NTs possess much larger sizes. Thereby the multishell nanotubes are good 

candidates for efficient engineering of phonon and thermal properties similar to multilayer planar 

heterostructures, heterowires and acoustic metamaterials [140], [154–157]. 

 

(a)      (b)  

Fig. 3.19. Thermal conductivity in NTs. 

(a) Ratio of the thermal conductivity in Si NW and Si/SiO2 NT as a function of temperature; 

(b) Temperature dependency of the thermal conductivity in Si/SiO2 NT.  

Figure is adopted from Ref. [139]. 

3.3. Conclusions to Chapter 3 

In this Chapter, we have studied phonon and thermal properties of quasi-one-dimensional 

silicon-based nanostructures: 1D-QDSLs (with constant and periodically modulated cross-

sections) and multi-shell nanotubes. The phonon energy dispersions were calculated using a face-

centred-cubic cell model of lattice vibrations. The thermal flux and thermal conductivity were 

calculated employing the Boltzmann transport equation approach within relaxation time 

approximation taking into consideration the one-dimensional density of phonon states. The main 

mechanisms of phonon scattering were taken into account: impurity, boundary, and Umklapp. It 

has been demonstrated that:  
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 Phonon modes in Si/Ge 1D-QDSLs are trapped in their segments due to an acoustical 

mismatch of materials. The slope of the phonon dispersion in 1D-QDSLs is smaller than 

in Si nanowires. Many high energy modes in Si/Ge QDSLs are dispersionless and possess 

low group velocities close to 0 value. 

 The average phonon group velocities in Si/Ge 1D-QDSLs are significantly lower than 

those in nanowires for all phonon energies in 1D-M-QDSLs and for phonon energies 

5 meV  in 1D-C-QDSLs. The effect of APGV drop is stronger in the case of 1D-M-

QDSLs due to the interplay between segmentation and cross-section modulation. 

 Thermal transport in Si/Ge 1D-QDSLs is significantly suppressed due to phonon 

deceleration and reinforcement of phonon scattering at Si/Ge interfaces. Up to 7-times 

(13.5-times) drop of TC was demonstrated for C-QDSLs (M-QDSLs) as a function of 

temperature. At room temperature, the thermal conductivity in Si/Ge 1D-C-QDSLs is by 

a factor of 2.6 – 2.9 lower than that in silicon nanowires with the same cross-section.  

 Thermal conductivity and thermal flux in 1D-QDSL increase with the growth of the 

specularity parameter due to the weakening of phonon boundary scattering. At the same 

time drop of the thermal flux becomes stronger with the rise of the specularity parameter. 

 In partially coated Si/SiO2 M-QDSLs heat propagates through internal silicon channel 

only, while in the fully coated M-QDSLs, it propagates through both internal Si and 

external SiO2 channels. As a result, the reduction of the thermal flux in partially coated 

Si/SiO2 M-QDSLs is stronger than that in fully coated M-QDSLs: up to ~ 6.5 times at room 

temperature for fully-coated M-QDLs and ~ 3.5 times for partially-coated M-QDSLs.  

 Phonon average group velocities in multi-shell Si nanotubes are close to 0 for phonon 

energies 10 meV . 

 The thermal conductivity in the Si/SiO2 nanotubes is lower than that in the Si nanowires 

with the same lateral dimensions due to acoustic mismatch of the materials and lower group 

velocities. 

 The phonon boundary scattering plays an important role in limiting thermal transport in 

the Si/SiO2 MNTs even for medium and high temperatures, where the three-phonon 

Umklapp scattering becomes relatively strong. At the same time Umklapp scattering 

stipulates decrease of thermal conductivity with rise of the temperature for   150  KT . 

 A large number of phonon modes in Si/SiO2 MNTs are scattered on Si/SiO2 interfaces. As 

a result, an L-fold drop of the thermal conductivity in a wide temperature range from 50K  

to 400K  is predicted for Si/SiO2 MNTs with L shells in comparison with one-shell Si/SiO2 
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NT. A similar dependence of TC on the number of shells was demonstrated experimentally 

for Si/SiO2 rolled-up nanotubes by G. Liu et al. in Ref. [152]. 

The obtained results confirm that considered Si-based one-dimensional quantum-dot-

superlattices and Si/SiO2 multi-shell nanotubes provide different opportunities for efficient 

phonon engineering. Ultra-low values of the thermal conductivities make these nanostructures 

prospective candidates for thermoelectric and thermal insulation applications.  

   



126 
 

GENERAL CONCULSIONS AND RECOMMENDATIONS 

The detailed theoretical study of exciton, phonon, and thermal properties of the Si/Ge, 

Si/SiC, and Si/SiO2 one-dimensional quantum-dot superlattices as well as phonon and thermal 

properties of the Si/SiO2 multi-shell nanotubes is carried out in the Thesis. Below is the summary 

of the obtained results. 

1. The effective mass approach was employed for the theoretical investigation of electron, 

hole, and exciton states in Si/SiO2 and Si/SiO2 1D-QDSLs: 

 It has been shown that for the qualitative description of exciton states it is crucial to 

take into account the anisotropy of electron and hole effective masses, mixing of 

heavy, light, and split-off holes as well as mixing of different electron and hole states. 

Exciton energies calculated within this theoretical approach with a three-band hole 

Hamiltonian were in good agreement with experimental exciton energies reported for 

Si QDs.  

 It has been demonstrated that electron, hole, and exciton states in considered 1D-

QDSLs can be effectively engineered by changing the QD’s shape and size which is 

particularly important for optoelectronic and biomedical applications of 1D-QDSLs. 

 Conical QDs possess the lower values of ground exciton energy in comparison with 

cuboid and pyramidal QDs for the volumes  332 nmV , while for  332 nmV

cuboid QDs demonstrate the lower values of ground exciton energy. 

 The outer media parameters influence the electron and hole ground energy only for Si 

QDs with narrow SiC shells with thickness 1 nm  because maximal penetration of 

hole and electron wave functions into barrier media in considered Si/SiC/air or 

Si/SiC/water QDs is about 1 nm .  

 It has been also revealed that the broadening of photoluminescence lines in Si/SiO2 

QDSLs can be explained by the dispersion of QD’s size and shape. 

2. The face-centred cubic cell model of lattice vibrations was applied for the theoretical study 

of phonon modes in Si/Ge and Si/SiO2 1D-QDSLs and in Si/SiO2 multi-shell nanotubes:  

 It has been theoretically shown that phonon modes in Si/Ge 1D-QDSLs are trapped in 

their segments due to an acoustical mismatch of materials. The slope of the phonon 

dispersion in 1D-QDSLs is smaller than that in Si nanowires.  
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 It has been revealed that many high energy phonon modes in Si/Ge QDSLs are 

dispersionless and possess low group velocities close to 0 value, resulting in the 

removal of these modes from heat flux.  

3. Boltzmann transport equation within relaxation time approximation was employed for 

the theoretical study of thermal processes in Si-based 1D-QDSLs and Si/SiO2 MNTs. All 

major phonon scattering mechanisms were taken into account: three-phonon Umklapp 

scattering, impurity, and boundary scatterings.  

 It has been revealed that thermal transport in Si/Ge 1D-QDSLs is significantly 

suppressed in comparison with Si nanowires or bulk. Up to 7-times (13.5-times) drop 

of lattice thermal conductivity was demonstrated for Si/Ge 1D-QDSLs with constant 

(modulated) cross-section in dependence of the temperature.  

 At room temperature, the thermal conductivity in Si/Ge 1D-C-QDSLs is by a factor of 

2.6 – 2.9 lower than that in silicon nanowires with the same cross-section. 

 In partially coated Si/SiO2 1D-M-QDSLs heat propagates through internal silicon 

channel only, while in the fully coated M-QDSLs, it propagates through both internal 

Si and external SiO2 channels. As a result, the reduction of the thermal flux in partially 

coated Si/SiO2 M-QDSLs is stronger than that in fully coated M-QDSLs: up to ~ 6.5 

times at room temperature for fully-coated M-QDSLs and ~ 3.5 times for partially-

coated M-QDSLs.  

 The thermal conductivity in the Si/SiO2 multi-shell nanotubes is lower than that in the 

Si nanowires with the same lateral dimensions due to acoustic mismatch of the 

materials and lower group velocities. 

 A large number of phonon modes in Si/SiO2 MNTs are scattered at Si/SiO2 interfaces. 

As a result, an L-fold drop of the thermal conductivity in a wide temperature range 

from 50K  to 400K  is predicted for Si/SiO2 MNTs with L shells in comparison with 

one-shell Si/SiO2 NT. 

Based on the conclusions presented above, the following recommendations can be made: 

1. For an accurate theoretical description of exciton states in Si/SiO2, Si/SiC/air and 

Si/SiC/water 1D-QDSLs is crucial to take into consideration the mixing of different 

electron and hole states as well as mixing of different hole types: heavy, light and split-off 

(three-band Hamiltonian). 
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2. The Si/Ge and Si/SiO2 1D-QDSLs as well as Si/SiO2 MNTs can be recommended as 

prospective candidates for thermoelectric and thermal insulation applications owing their 

ultra-low thermal conductivity. 

3. Engineering of exciton and phonon states in 1D-QDSLs described in the Thesis can be 

useful for practical enhancement of their optical, thermal, and thermoelectric parameters. 

4. Dispersion of quantum dot’s size and shape may be a key factor for the interpretation of 

experimental results in the field of exciton-related processes in silicon QDs with 

dimensions of several nanometers.  
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